首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The authors performed photodynamic therapy (PDT), avoiding any hyperthermic effects, using a newly developed diode laser and photosensitizer, mono-L-aspar-tyl chlorin e6 (NPe6), of Meth-A fibrosarcoma implanted in mice and achieved tumor therapeutic benefit. The photodynamic light treatment was performed 5 h following the photosensitizer administration. With 5.0 mg/kg NPe6 and light doses of 50, 100, 150 and 200 J/cm2, the tumor cure rates were 20, 50, 70 and 90%, respectively. With 100 J/cm2 laser exposure and NPe6 doses of 1.25, 2.5, 5.0, 7.5 and 10.0 mg/kg, the tumor cure rates were 0, 20, 50, 70 and 90%, respectively. A charge-coupled device (CCD) camera system was employed to measure the NPe6 fluorescence intensity correlating with the residual amount of the photosensitizer at deferent depth from the tumor surface. The ratios of the NPe6 fluorescence intensity at 3 mm from the tumor surface following 50, 100, 150 and 200 J/cm2 laser exposure to no laser exposure were 0.73, 0.36, 0.22 and 0.16, respectively. With samples sectioned at 1 mm depth, after 50 J/cm2 and the same photosensitizer dose (5 mg/kg) this ratio was 0.19. These results suggest that a certain increase in the tumor tissue level of NPe6 and a certain increase of laser light dose reaching deeper layers of tumor caused an increase in percent cure. In addition, the effectiveness of PDT depends on the total laser dose reaching deeper layers of tumors. Furthermore, the effectiveness of PDT tends to correlate with the amount of NPe6 photobleaching by PDT.  相似文献   

2.
The response of photodynamic therapy on normal brain was investigated in 140 Fisher rats. The rats were injected i.p. with Photofrin II (12.5 mg/kg) and 48 h later the dural area over the frontal cortex was photoactivated with red light (630 +/- 1 nm) from an argon dye laser. Treatment was performed with optical energy densities of 140 and 70 J/cm2. Histopathology, vascular permeability and specific gravity measurements were conducted on different populations of rats at 4 h, 24 h, 72 h and 1 week after photodynamic therapy (PDT). Histopathology revealed similar gross and microscopic pathology associated with light energies of 70 and 140 J/cm2 after all time points. A large cerebral infarct approximately the size of the brain surface area treated, evolved 24 h following treatment. Evans blue extravasation indicated a small area of vascular permeability evident as early as 4 h following PDT treatment at both energy levels, with increasing permeability evident at later time points. Specific gravity measurements taken on a representative area of the lesion indicated a significant (P less than 0.01) amount of edema present at 24 h post treatment with a gradual reduction approaching control values over the time period of 1 week. The data indicate a significant amount of damage to normal brain from low PDT treatment doses.  相似文献   

3.
Photodynamic therapy (PDT) is an effective treatment for a number of solid malignancies. In this work, the antitumor efficacy of photodynamic therapy for murine B16 melanoma with intravenous administration of a new photosensitizer (PS) based on the chlorin e6 conjugate with a prostate-specific membrane antigen (PSMA) was studied in vivo. We have previously published the data obtained in the first part of the study: the dynamics of PS accumulation in the tumor and surrounding tissues and the antitumor efficacy of the photodynamic therapy, which was evaluated by the regression parameters and morphological characteristics of the tumors—including by the complete regression of the tumors, the absolute growth rate of the tumors among the mice with continued tumor growth, and an increase in life expectancy compared to the control. The criterion for a complete cure was the absence of signs of tumor recurrence within 90 days after therapy. The conducted studies demonstrated the high efficiency of the new photosensitizer for the photodynamic therapy of B16 melanoma. This article presents a continuation of this work, including histological studies of the zones exposed to laser irradiation on the 21st day after treatment and an assessment of the therapeutic potential of photodynamic therapy for the destruction of tumor cells. Pathological studies in the zones of photodynamic exposure revealed that the effectiveness of the PDT depended on the PS dose and the laser irradiation parameters.  相似文献   

4.
The development of photosensitizers for cancer photodynamic therapy has been challenging due to their low photostability and therapeutic inefficacy in hypoxic tumor microenvironments. To overcome these issues, we have developed a mitochondria-targeted photosensitizer consisting of an indocyanine moiety with triphenylphosphonium arms, which can self-assemble into spherical micelles directed to mitochondria. Self-assembly of the photosensitizer resulted in a higher photostability by preventing free rotation of the indoline ring of the indocyanine moiety. The mitochondria targeting capability of the photosensitizer allowed it to utilize intramitochondrial oxygen. We found that the mitochondria-targeted photosensitizer localized to mitochondria and induced apoptosis of cancer cells both normoxic and hypoxic conditions through generation of ROS. The micellar self-assemblies of the photosensitizer were further confirmed to selectively localize to tumor tissues in a xenograft tumor mouse model through passive targeting and showed efficient tumor growth inhibition.  相似文献   

5.
Photodynamic therapy of certain neoplasms has emerged as a promising form of cancer treatment. This type of therapy involves the exogenous administration of a photosensitizer with subsequent exposure to light. The ensuing photochemical reaction results in destruction of the tumor. Whether tumor cells are destroyed directly by the photodynamic treatment or indirectly as a result of destruction of the tumor microvascular bed is unknown. To address this question, methods were adapted to test whether combinations of a photosensitizer and light resulted in direct cell killing of precision cut tissue slices placed in culture. The major advantages of this culture system are that photosensitizers are administered in vivo, tissue slices produced in minutes, placed in culture medium, and irradiated in vitro. Any resulting cellular destruction occurs in the absence of a functioning vascular system and indicates that photodynamic therapy acts through a direct cell killing mechanism. Tissue slice viability was monitored by two standard methods: assay for intracellular potassium and morphological examination at the electron microscopic level. The effects of hematoporphyrin derivative and light were examined on tissue slices produced from a prostate adenocarcinoma transplanted into male Copenhagen rats. The data indicate that direct killing of tumor slices occurs and is dependent on the irradiation protocol used.  相似文献   

6.
We have investigated tumor immunological effects of photodynamic therapy (PDT) of liver metastases. Livers of Wag/Rij rats were inoculated with three tumors of a syngeneic rat colon carcinoma cell line, CC531. One tumor in each rat was illuminated, with or without previous administration of the photosensitizer metatetrahydroxyphenylchlorin (mTHPC). PDT was effective in causing necrosis of tumors, but it did not affect the growth rate of nearby, nonilluminated tumors in the liver. Immunological staining of tumors showed natural killer (NK) cells to be significantly lower in PDT-treated tumors than in control tumors (P < 0.05). T cells in PDT-treated tumors and in their margins were lower than in tumors that received only sensitizer or only illumination (P = 0.015) at day 2 after treatment but reappeared at the tumor margins from day 7 after treatment. For macrophages, a similar pattern was found. NK cells, T cells or macrophages in nonilluminated tumors in mTHPC-treated rats did not increase significantly when compared with tumors in rats without mTHPC treatment. These findings indicated that no antitumor effect of a systemic immune response was present, as measured by the effect of PDT on growth of distant tumors and the number of T lymphocytes, NK cells and macrophages in these tumors.  相似文献   

7.
Photodynamic therapy in head and neck surgery   总被引:3,自引:0,他引:3  
The results of a clinical study of photodynamic therapy (PDT) on early stage cancer in head and neck surgery are presented in this report. 30 patients with T1 malignancies of the face and oropharynx have been treated primarily with PDT. After the longest follow up of 14 months two patients revealed recurrence of the disease or residual tumor, two patients have been retreated because of residual dysplastic cells in the control biopsy, and all other patients stay histologically proven free of disease. Hence, PDT appears to be a promising cancer treatment for different histological tumors that penetrate the host tissue definitely less than a laser beam of 630 nm, which is the appropriate wavelength for PDT. Deeper-penetrating malignomas may be accessable for PDT using insertable filters when applying interstitial laser light.  相似文献   

8.
The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates for extended periods of time to increase selective tumor cell kill through apoptosis. The focus of the present preclinical study is on mPDT treatment of malignant brain tumors, in which selectivity tumor cell killing versus damage to normal brain is critical. Previous studies have shown that low‐dose PDT using 5‐aminolevulinic acid (ALA)‐induced protoporphyrin IX(PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. On the basis of the levels of apoptosis achieved and model calculations of brain tumor growth rates, metronomic delivery or multiple PDT treatments, such as hyperfractionation, are likely required to produce enough tumor cell kill to be an effective therapy. In vitro studies confirm that ALA‐mPDT induces a higher incidence of apoptotic (terminal deoxynucleotidyl transferase‐mediated 2′‐deoxyuridine 5′‐triphosphate, sodium salt nick‐end labeling positive) cells as compared with an acute, high‐dose regimen (ALA‐αPDT). In vivo, mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of devices for extended light delivery while allowing unencumbered movement. In rat models, ALA administration via the drinking water has been accomplished at very high doses (up to 10 times therapeutic dose) for up to 10 days, and ex vivo spectro‐fluorimetry of tumor (9L gliosarcoma) and normal brain demonstrates a 3–4 fold increase in the tumor‐to‐brain ratio of PpIX concentration, without evidence of toxicity. After mPDT treatment, histological staining reveals extensive apoptosis within the tumor periphery and surrounding microinvading colonies that is not evident in normal brain or tumor before treatment. Prototype light sources and delivery devices were found to be practical, either using a laser diode or light‐emitting diode (LED) coupled to an implanted optical fiber in the rat model or a directly implanted LED using a rabbit model. The combined delivery of both drug and light during an extended period, without compromising survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.  相似文献   

9.
Previous studies in our laboratory have demonstrated that photodynamic therapy (PDT) of experimental bladder tumors leads to rapid destruction of the endothelial lining within the tumor microvasculature. Endothelial cell death during PDT may be a consequence of direct cell injury resulting from retention of photosensitizer within the endothelial cell or, alternatively, result from intravascular activation of circulating photosensitizer with subsequent indirect endothelial damage. In the experiments described here, we investigated the possibility that photosensitizer retained within the endothelial cell was sufficient to cause endothelial cell injury in the absence of circulating drug. The experimental model was rat aorta photosensitized in vivo via the intravenous injection of tin(II) etiopurpurin dichloride (SnET2), and subsequent in situ or in vitro (in explant culture) light (670 nm) treatment from an argon pumped dye laser. Damage to the lining of the aorta was assessed morphometrically by determining the areal density of silver stained endothelial cells. Results indicate that purpurin SnET2-PDT directly damages the endothelial lining.  相似文献   

10.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

11.
The photodynamic properties of meta-tetra(hydroxyphenyl)chlorin (mTHPC), a promising second-generation photosensitizer, were investigated using a human colon adenocarcinoma cell line (Colo 201 cells). The study on photocytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay showed that mTHPC was an effective photosensitizer on Colo 201 cells. The photocytotoxicity of mTHPC showed both drug and light dose-dependent characteristics. To reach LD50, namely, the dose at which 50% of the cells were killed, only 0.45+/-0.15 microg/mL of mTHPC and 3 J/cm2 of light dose were required. The presence of 10% fetal calf serum in culture medium significantly decreased the incorporation of mTHPC into cells and resulted in the reduction of photodynamic efficacy. Using confocal laser scanning microscopy, mTHPC was first shown to localize in lysosomes rather than in mitochondria. Furthermore, nuclear stainings demonstrated that photodynamic therapy with mTHPC induced apoptosis in Colo 201 cells.  相似文献   

12.
The relationship between levels of in vivo accumulated photosensitizer (Photofrin II), photodynamic cell inactivation upon in vitro or in vivo illumination, and changing tumor oxygenation was studied in the radiation-induced fibrosarcoma (RIF) mouse tumor model. In vivo porphyrin uptake by tumor cells was assessed by using 14C-labeled photosensitizer, and found to be linear with injected photosensitizer dose over a range of 10 to 100 mg/kg. Cellular photosensitivity upon exposure in vitro to 630 nm light also varied linearly with in vivo accumulated photosensitizer levels in the range of 25 to 100 mg/kg injected Photofrin II, but was reduced at 10 mg/kg. Insignificant increases in direct photodynamic cell inactivation were observed following in vivo light exposure (135 J/cm2, 630 nm) with increasing cellular porphyrin levels. These data were inconsistent with expected results based on in vitro studies. Assessment of vascular occlusion and hypoxic cell fractions following photodynamic tumor treatment showed the development of significant tumor hypoxia, particularly at 50 and 100 mg/kg of Photofrin II, following very brief light exposures (1 min, 4.5 J/cm2). The mean hyupoxic cell fractions of 25 to 30% in these tumors corresponded closely with the surviving cell fractions found after tumor treatment in vivo, indicating that these hypoxic cells had been protected from PDT damage. Inoculation of tumor cells, isolated from tumors after porphyrin exposure, into porphyrin-free hosts, followed by in vivo external light treatment, resulted in tumor control in the absence of vascular tumor bed effects at high photosensitizer doses only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sustained tumor oxygenation is of critical importance during type‐II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6‐integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type‐II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

14.
Sustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

15.
The ability to noninvasively measure photosensitizer concentration at target tissues will allow optimization of photodynamic therapy (PDT) and could improve outcome. In this study, we evaluated whether preirradiation tumor phthalocyanine 4 (Pc 4) concentrations, measured noninvasively by the optical pharmacokinetic system (OPS), correlated with tumor response to PDT. Mice bearing human breast cancer xenografts were treated with 2 mg kg−1 Pc 4 iv only, laser irradiation (150 J cm−2) only, Pc 4 followed by fractionated irradiation or Pc 4 followed by continuous irradiation. Laser irradiation treatment was initiated when the tumor to skin ratio of Pc 4 concentration reached a maximum of 2.1 at 48 h after administration. Pc 4 concentrations in tumor, as well as in Intralipid in vitro , decreased monoexponentially with laser fluence. Pc 4-PDT resulted in significant tumor regression, and tumor response was similar in the groups receiving either fractionated or continuous irradiation treatment after Pc 4. Tumor growth delay following Pc 4-PDT correlated with OPS-measured tumor Pc 4 concentrations at 24 h prior to PDT ( R 2 = 0.86). In excised tumors, OPS-measured Pc 4 concentrations were similar to the HPLC-measured concentrations. Thus, OPS measurements of photosensitizer concentrations can be used to assist in the scheduling of Pc 4-PDT.  相似文献   

16.
The aim of this study is to modify the chick chorioallantoic membrane (CAM) model into a whole-animal tumor model for photodynamic therapy (PDT). By using intraperitoneal (i.p.) photosensitizer injection of the chick embryo, use of the CAM for PDT has been extended to include systemic delivery as well as topical application of photosensitizers. The model has been tested for its capability to mimic an animal tumor model and to serve for PDT studies by measuring drug fluorescence and PDT-induced effects. Three second-generation photosensitizers have been tested for their ability to produce photodynamic response in the chick embryo/CAM system when delivered by i.p. injection: 5-aminolevulinic acid (ALA), benzoporphyrin derivative monoacid ring A (BPD-MA), and Lutetium-texaphyrin (Lu-Tex). Exposure of the CAM vasculature to the appropriate laser light results in light-dose-dependent vascular damage with all three compounds. Localization of ALA following i.p. injections in embryos, whose CAMs have been implanted with rat ovarian cancer cells to produce nodules, is determined in real time by fluorescence of the photoactive metabolite protoporphyrin IX (PpIX). Dose-dependent fluorescence in the normal CAM vasculature and the tumor implants confirms the uptake of ALA from the peritoneum, systemic circulation of the drug, and its conversion to PpIX.  相似文献   

17.
Photodynamic therapy (PDT) of malignancies uses light to activate a photosensitizer preferentially accumulated in cancer cells. The first pegylated photosensitizer, tetrakis-(m-methoxypolyethylene glycol) derivative of 7,8-dihydro-5,10,15,20-tetrakis(3-hydroxyphenyl)-21-23-[H]-porphyrin (PEG-m-THPC), was evaluated in non-tumor-bearing rats. The aim of this study was to assess the photodynamic threshold for damage and its sequelae in normal rat tissue. Thirty-five Fischer rats were sensitized with 3, 9 or 30 mg/kg body weight PEG-m-THPC. Colon, vagina and perineum were irradiated with laser light of 652 nm wavelength and an optical dose of 50, 150 or 450 J/cm fiber length. Temperature in the pelvis was measured during PDT. Three days following PDT the effect on skin, vagina, colon, striated muscle, connective tissue, nerves and blood vessels was assessed by histology. The healing of the above-mentioned tissues was assessed on two rats 3 and 8 weeks after PDT using 9 mg/kg PEG-m-THPC activated with 450 J/cm laser light. No dark toxicity was observed. PDT using 30 mg/kg PEG-m-THPC induced severe necrosis irrespective of the optical dose. Body weight of 9 or 3 mg/kg activated with less than 450 J/cm induced moderate or no damage. No substantial increase in body temperature was seen during PDT. Tissues with severe PDT-induced damage seem to have a good tendency to regenerate. We conclude that within the dose required for tumor treatment PEG-m-THPC is a safe photosensitizer with promising properties. PDT of the colon mucosa below 9 mg/kg PEG-m-THPC and 150 J/cm seems to be safe. All other tissues can be exposed to 9 mg/kg PEG-m-THPC activated with less than 450 J/cm laser light with little side effects.  相似文献   

18.
Photodynamic therapy (PDT) has received increased attention as a treatment modality for malignant tumors as well as non-oncologic diseases such as age-related macular degeneration (AMD). An alternative to excite the photosensitizer by the common one-photon absorption is the method of two-photon excitation (TPE). This two-photon photodynamic therapy has the potential of improving the therapeutic outcome due to a highly localized photodynamic effect. The present study investigated the two-photon excited PDT performing in vitro experiments where C6 rat glioma cells were irradiated with a pulsed and focused fs Ti:sapphire laser emitting light at 800 nm. The irradiance distribution of the laser beam was carefully analyzed before the experiment and the applied irradiance was known for each position within the irradiated cell layer. Cells were divided into four groups and one group was incubated with 5-ALA and irradiated 4-5h later. The survival of this group was tested after irradiation by means of ethidium bromide and acridine orange staining and compared to a control group, which was irradiated under the same conditions, but not incubated with 5-ALA before. Both groups showed necrotic areas depending on the applied irradiance, the value of which at the margin of the necrotic area could be deduced from its size. 5-ALA incubated cells became necrotic after irradiation with a mean irradiance above 6.1 x 10(10) W/cm(2), while non-incubated cells remained viable. Cells of both groups became necrotic when treated with an irradiance above 10.9 x 10(10) W/cm(2). The observed affected area of the cell layers was between 0.13 mm(2) and 1.10 mm(2). Since the irradiation of non-incubated cells below the mean power density of 10.9 x 10(10) W/cm(2) induced no necrosis, apparently no thermal damage was induced in the cells and necrosis of the 5-ALA incubated cells can be ascribed to the photodynamic effect induced by two-photon excitation. The successful photodynamic treatment of a large area of a monolayer cell culture induced by two-photon excitation offers new perspectives for photodynamic treatment modalities.  相似文献   

19.
Damage Threshold of Normal Rat Brain in Photodynamic Therapy   总被引:4,自引:0,他引:4  
Normal brain tissue response to photodynamic therapy (PDT) must be quantified in order to implement PDT as a treatment of brain neoplasm. We therefore calculated the threshold for PDT-induced tissue necrosis in normal brain using Photofrin (porfimer sodium, Quadralogic Technologies Inc., Vancouver, BC) as the photosensitizer. The absolute light fluence-rate distribution for superficial irradiation and effective attenuation depth were measured in vivo using an invasive optical probe. Photosensitizer uptake in cerebral cortex was measured with chemical extraction and fluorometric analysis. Photodynamic therapy-induced lesion depths at various drug dose levels were measured as a biological end point. The PDT threshold for normal brain necrosis was calculated as in the magnitude of 1016 photons/cm3. Thus normal rat brain is extremely vulnerable to PDT damage. This suggests that extra precautions must be exercised when PDT is used in brain.  相似文献   

20.
Photodynamic Therapy of Human Glioma (U87) in the Nude Rat   总被引:3,自引:1,他引:3  
Abstract— We measured the response of normal brain and the human U87 glioma implanted in the brain of rats (n = 65) to photodynamic therapy (PDT) using Photofrin as the sensitizer. Normal brain and U87 tumor implanted within brain of athymic (nude) rats were subjected to PDT (12.5 mg/kg of Photofrin) at increasing optical energy doses (35 J/cm2, 140 J/cm2, 280 J/cm2) of 632 nm light. Photofrin concentration in tumor, brain adjacent to tumor and normal brain were measured in a separate population of rats. Twenty-four hours after PDT, the brains were removed, sectioned, stained with hematoxylin and eosin (H&E), and the volumes of the PDT-induced lesion measured. Photofrin concentration in tumor greatly exceeded that of normal brain and brain adjacent to tumor (>20×). Both normal brain and U87 tumor exhibited superficial tissue damage with PDT at 35 J/cm2. However, both normal and tumor-implanted brain exhibited tissue damage with increasing optical dose. A heterogeneous pattern of pannecrosis along with a uniform volume of pannecrosis was detected in the tumor. In contrast, normal brain exhibited a uniform sharply demarcated volume of necrosis. Our data indicate that the U87 human brain tumor model and the normal brain in the athymic rat are sensitive to PDT and Photofrin with an optical dose-dependent response to treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号