首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this Letter, by using a novel extended homoclinic test approach (EHTA) we obtain two new types of exact periodic solitary-wave and kinky periodic-wave solutions for Jimbo-Miwa equation. Moreover, we investigate the strangely mechanical features of wave solutions. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

2.
Exact Periodic Solitary-Wave Solution for KdV Equation   总被引:1,自引:0,他引:1       下载免费PDF全文
A new technique, the extended homoclinic test technique, is proposed to seek periodic solitary wave solutions of integrable systems. Exact periodic solitary-wave solutions for classical KdV equation are obtained using this technique. This result shows that it is entirely possible for the (l + l)-dimensional integrable equation that there exists a periodic solitary-wave.  相似文献   

3.
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.  相似文献   

4.
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.  相似文献   

5.
Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of these waves when the influence of long-range effects is small. When the long-range diffusion coefficient becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find that starting with some values, solutions of the model lose monotonicity and become oscillatory.  相似文献   

6.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

7.
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Hénon map, where chaos appears mainly around the origin, which is an unstable periodic orbit. In this case the chaotic orbits around the origin are represented by analytic series (Moser series). We find the domain of convergence of these Moser series and of similar series around other unstable periodic orbits. The asymptotic manifolds from the various unstable periodic orbits intersect at homoclinic and heteroclinic orbits that are given analytically. Then we consider some Hamiltonian systems and we find their homoclinic orbits by using a new method of analytic prolongation. An application of astronomical interest is the domain of convergence of the analytical series that determine the spiral structure of barred-spiral galaxies.  相似文献   

8.
U. Al Khawaja 《Physics letters. A》2009,373(31):2710-2716
We consider a general form of the Gross-Pitaevskii equation with time- and space-dependent effective mass, external potential and strength of interatomic interaction. Using the inverse-scattering method, we derive the integrability condition of this equation within a general scheme that can be used to find exact solutions of a wide range of linear and nonlinear partial differential equations. We use this condition to derive exact solitonic solutions of the one-dimensional time-dependent Gross-Pitaevskii equation corresponding to a Bose-Einstein condensate trapped by a periodic potential. Both attractive and repulsive interatomic interactions are considered. The values of the parameters of the potential can be chosen such that the periodic potential becomes almost identical to that of an optical lattice.  相似文献   

9.
In this letter, we study an integrable Camassa-Holm hierarchy whose high-frequency limit is the Camassa-Holm equation. Phase plane analysis is employed to investigate bounded traveling wave solutions. An important feature is that there exists a singular line on the phase plane. By considering the properties of the equilibrium points and the relative position of the singular line, we find that there are in total three types of phase planes. Those paths in phase planes which represented bounded solutions are discussed one-by-one. Besides solitary, peaked and periodic waves, the equations are shown to admit a new type of traveling waves, which concentrate all their energy in one point, and we name them deltons as they can be expressed as some constant multiplied by a delta function. There also exists a type of traveling waves we name periodic deltons, which concentrate their energy in periodic points. The explicit expressions for them and all the other traveling waves are given.  相似文献   

10.
11.
We propose a variational method for determining homoclinic and heteroclinic orbits including spiral-shaped ones in nonlinear dynamical systems. Starting from a suitable initial curve, a homotopy evolution equation is used to approach a true connecting orbit. The procedure is an extension of a variational method that has been used previously for locating cycles, and avoids the need for linearization in search of simple connecting orbits. Examples of homoclinic and heteroclinic orbits for typical dynamical systems are presented. In particular, several heteroclinic orbits of the steady-state Kuramoto–Sivashinsky equation are found, which display interesting topological structures, closely related to those of the corresponding periodic orbits.  相似文献   

12.
It has been shown recently that torus formation in piecewise-smooth maps can occur through a special type of border collision bifurcation in which a pair of complex conjugate Floquet multipliers “jump” from the inside to the outside of the unit circle. It has also been shown that a large class of impacting mechanical systems yield piecewise-smooth maps with square-root singularity. In this Letter we investigate the dynamics of a two-dimensional piecewise-smooth map with square-root type nonlinearity, and describe two new routes to chaos through the destruction of two-frequency torus. In the first scenario, we identify the transition to chaos through the destruction of a loop torus via homoclinic bifurcation. In the other scenario, a change of structure in the torus occurs via heteroclinic saddle connections. Further parameter changes lead to a homoclinic bifurcation resulting in the creation of a chaotic attractor. However, this scenario is much more complex, with the appearance of a sequence of heteroclinic and homoclinic bifurcations.  相似文献   

13.
J.C. Barba 《Physics letters. A》2008,372(38):5951-5954
We describe a class of the singular solutions to the multicomponent analogs of the Lamé equation, arising as equations of motion of the elliptic Calogero-Moser systems of particles carrying spin 1/2. At special value of the coupling constant we propose the ansatz which allows one to get meromorphic solutions with two arbitrary parameters. They are quantized upon the requirement of the regularity of the wave function on the hyperplanes at which particles meet and imposing periodic boundary conditions. We find also the extra integrals of motion for three-particle systems which commute with the Hamiltonian for arbitrary values of the coupling constant.  相似文献   

14.
A circular chain of N cells with logistic dynamics, coupled together with symmetric nearest neighbor coupling and periodic boundary conditions is investigated. For certain coupling parameters we observe bifurcation of a stable state into two types of period two solutions. By using the symmetry of this Coupled Map Lattice model, we show that the bifurcated system only can have periodic solutions with symmetry group corresponding to certain subgroups of the full symmetry group of the system.  相似文献   

15.
The exact periodic homoclinic wave of (1+1)D long-short wave equation is obtained using an extended homoclinic test technique. This result shows complexity and variety of dynamical behaviour for a (1+1)-dimensional long-short wave equation.  相似文献   

16.
Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure.  相似文献   

17.
18.
In addition to the well-known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantized, thus introducing strong quantum correlations. The corresponding quantization rules are also established. This opens the door for developing computationally tractable methods to calculate eigenstates of chaotic systems.  相似文献   

19.
In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system.  相似文献   

20.
We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-Jupiter-Oterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. Moreover, we show the existence of symbolic dynamics on six symbols for PCR3BP and the possibility of resonance transitions of the comet. This extends earlier results by Wilczak and Zgliczynski [12]. Electronic Supplementary Material: Supplementary material is available in the online version of this article at An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号