首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a novel mechanism for creating a qubit based on a tight trefoil knot, that is an electron nano-waveguide system so small as to be quantum coherent with respect to curvature-induced effects. To establish tight trefoil knots as legitimate candidates for qubits, we propose an effective curvature-induced potential that produces the two-level system and identify the tunnel coupling between the two local states. The proposed two-level system is geometrical in nature and is macroscopic of origin. It also represents new and peculiar property of the trefoil knot. We also propose a different realization of a qubit based on twisted nano-bars and nano-tubes.  相似文献   

2.
G. Karpat 《Optics Communications》2009,282(22):4460-4463
We study time dependence of exchange symmetry properties of Bell states when two-qubits interact with local baths having identical parameters. In case of classical noise, we consider a decoherence Hamiltonian which is invariant under swapping the first and second qubits. We find that as the system evolves in time, two of the three symmetric Bell states preserve their qubit exchange symmetry with unit probability, whereas the symmetry of the remaining state survives with a maximum probability of 0.5 at the asymptotic limit. Next, we examine the exchange symmetry properties of the same states under local, quantum mechanical noise which is modeled by two identical spin baths. Results turn out to be very similar to the classical case. We identify decoherence as the main mechanism leading to breaking of qubit exchange symmetry.  相似文献   

3.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

4.
We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part of the weak value. We present compact expressions for the weak value of single qubit observables and of product observables on qubit pairs. Experimental studies of the results are suggested with cold trapped ions.  相似文献   

5.
We discuss the discrimination of arbitrary qubit channels and the discrimination of qubit channels with the aid of entanglement. Nevertheless, the maximally entangled states might decrease the distinguishability, even if the channel is not entanglement-breaking one.  相似文献   

6.
We consider a system interacting with a chaotic thermodynamic bath. We derive an explicit and exact Kraus operator sum representation (OSR) for the open system reduced density. The OSR preserves the Hermiticity, complete positivity and norm. We show that it is useful as a numerical tool by testing it against exact results for a qubit interacting with an isolated flawed quantum computer. We also discuss some interesting qualitative aspects of the OSR.  相似文献   

7.
Firstly, we investigate the necessary and sufficient conditions that an entangled channel of n-qubits should satisfy to carry out perfect teleportation of an arbitrary single qubit state and dense coding. It is shown that the sender can transmit two classical bits of information by sending one qubit. Further, the case of high-dimension quantum state is also considered. Utilizing n-qudit state as quantum channel, it is proposed that the necessary and sufficient conditions are in all to teleport an arbitrary single qudit state. The sender can transmit 2log2d classical bits of information to the receiver conditioned on the constraints.  相似文献   

8.
The Lindblad generators of the master equation define which kind of decoherence happens in an open quantum system. We are working with a two qubit system and choose the generators to be projection operators on the eigenstates of the system and unitary bilocal rotations of them. The resulting decoherence modes are studied in detail. Besides the general solutions we investigate the special case of maximally entangled states—the Bell singlet states. The results are depicted in the so-called spin geometry picture which allows to illustrate the evolution of the (nonlocal) correlations stored in a certain state. The question for which conditions the path traced out in the geometric picture depends only on the relative angle between the bilocal rotations is addressed.  相似文献   

9.
We present a new protocol for constructing a nonlocal n-qubit controlled-U gate. In this protocol, no prior sharing of entanglement is needed and only one ancilla qubit is sent once from one party to another. Thus, the present protocol is very efficient for performing a nonlocal multiqubit controlled-U gate, which is important to network quantum information processing and communication.  相似文献   

10.
Employing the area quantum 1/2 excited by the Wilson loop, a possible origin of qubit is argued. At the same time, the existences of possible entanglement of area quantums, and non-local property of the entangled states are demonstrated in quantized space.  相似文献   

11.
This paper explores the problem of manipulating multiple-qubit systems when only single-qubit operations or two-qubit-interactive operations are permitted. It is demonstrated that if there exist 2 directional control Hamiltonian for each individual qubit, and one interactive Hamiltonian for each pair of qubits, then multiple qubit systems are open-loop controllable. An important observation of physical interest is emphasized: when only single-qubit operations or two-qubit-interactive operations are permitted, only n(n+3)/2 control Hamilton may guarantee open-loop controllability of n qubit systems, and n(n+3) is, in the restricted sense, also the lower limit on the number of operators needed for controllability. At last, we demonstrate that an n-quantum-dot system is open-loop controllable even when only single-qubit operations or two-qubit-interactive operations are permitted.  相似文献   

12.
We first assume that there are only bipartite noisy qubit channels in a given multipartite system, and present three methods to distill the general Greenberger-Horne-Zeilinger state. By investigating the methods, we show that multipartite entanglement distillation by bipartite entanglement distillation has higher yield than ones in the previous multipartite entanglement distillations.  相似文献   

13.
We derive an exact and explicit Kraus decomposition for the reduced density of a quantum system simultaneously interacting with time-dependent external fields and a chaotic environment of thermodynamic dimension. We test the accuracy of the Kraus decomposition against exact numerical results for a CNOT gate performed on two qubits of an (N+2) qubit statically flawed isolated quantum computer. Here the N idle qubits comprise the finite environment. We obtain very good agreement even for small N.  相似文献   

14.
Positive-operator-value-measurement (POVM) is one of the essential components of quantum information processing ( QIP). Recently a 'binary measurement tree' (BST) strategy (PRA 77, 052104) is suggested for implementing arbitrary POVM by sequential two-operator POVMs. We present a simple novel two-operator POVM module via linear optics, which is employed as block to construct a 'binary measurement tree' for implementing arbitrary POVM on single photonic polarization qubit. The total complexity of the experimental setup is significantly reduced in contrast to the previous works. As an example, we give the detailed settings of a well-known POVM.  相似文献   

15.
Based on the famous quantum secure direct communication protocol (i.e., the Boström-Felbinger protocol) [Phys. Rev. Lett. 89 (2002) 187902] and its improvements, we propose a scheme of multiparty quantum secret sharing of classical messages (QSSCM), in which no subset of all the classical message receivers is sufficient to extract the sender’s secret classical messages but all the parties cooperate together. Then we take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which the unknown quantum state in the sender’s qubit can be reconstructed in one receiver’s qubit if and only if all the quantum information receivers collaborate together.  相似文献   

16.
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.  相似文献   

17.
In the present paper we consider the case of a two-level ion in a cavity in the presence of a single mode field linearly polarized. We suppose that the ion is free to move along the polarization direction and trapped by a harmonic potential along the other two directions. By multiple path integration we derive the density matrix of the system and we study its dynamics. We assume an initial electromagnetic vacuum. This initial condition for the present system, compared with any other initial photonic state, gives new and higher order leading terms with respect to an expansion in powers of the inverse of the volume. Further after such an expansion there appears a first order term that originates from the combined interaction of the two-level system (qubit) with the quantum motion of the ion and the electromagnetic field in the cavity. We notice that the dynamics of the present system is very rich and can be studied exhaustively in the present framework.  相似文献   

18.
We propose and analyse experimentally feasible implementations of single-qubit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by elliptically polarized pulsed laser fields, in part based on a proposal by Kis and Renzoni [Z. Kis, F. Renzoni, Phys. Rev. A 65 (2002) 032318]. These techniques require only the control of the relative phase of the driving fields but do not involve any dynamical or geometric phases, which makes it independent of the other interaction details: detuning, pulse shapes, pulse areas and pulse durations. The suggested techniques are immune to spontaneous emission since the qubit manipulation proceeds through non-absorbing dark states. We also propose an alternative technique using compensation of dynamical Stark shifts by two consecutive non-resonant fractional-STIRAP processes.  相似文献   

19.
In this Letter, we have calculated the concurrence of the pairwise thermal entanglement for the four-qubit and five-qubit Heisenberg XX chain. It is found that there is a great difference between the even-qubit and the odd-qubit chain in the aspect of the critical temperature and of the existence of the entanglement for the case of the qubit number n no more than 5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号