共查询到20条相似文献,搜索用时 77 毫秒
1.
In this presentation we focus on the synthesis of buried multielemental semiconductor nanoparticles by sequential high dose ion implantation and post-implantation annealing. Nanocluster formation and alloying was studied by Raman-, Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction analysis (XRD) on a materials library of CdSxSe1−x nanoclusters buried in thermally grown SiO2 on silicon. Characteristic peak shifts of the LO-Raman signal and XRD-peaks due to varying S- and Se-fraction indicate that the ion beam synthesized clusters consist of a solid solution of Cd, S and Se. In addition the influence of the implanted dose ratios on the structural evolution of the nanocluster-SiO2 system will be discussed. 相似文献
2.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed. 相似文献
3.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated. 相似文献
4.
Manju Lata Rao 《Solid State Communications》2004,129(12):781-784
Bulk amorphous Co(100−x)Ptx (0≤x≤50) nano-alloys have been synthesized using high frequency ultrasound, displaying single domain (4-5 nm) behavior wherein weakly exchange-coupled particles lead to a field-dependent resistivity behavior. Magneto-resistivity is correlated to the order-disorder parameter in these powder compacts. The plot of Δρ/ρ0 as a function of reduced magnetization indicates that all the systems are weakly exchange coupled. 相似文献
5.
《Solid State Communications》2003,128(11):407-411
We report the optical and structural properties of PbS nanoparticles in zeolite A. The samples were obtained by sulfidation of the Pb2+ ion-exchanged zeolite in a thiourea solution at 50 °C. The optical properties of the samples were studied by diffuse reflectance spectroscopy. Their crystalline structure and morphology were studied by electron diffraction and by transmission and scanning electron microscopy. The results show that the nanoparticles are not inside the zeolite cages but outside, embedded in the zeolite matrix. Exciton absorption peaks at much higher energy than the fundamental absorption edge of bulk PbS indicate quantum confinement effects in the spherical shape nanoparticles as a consequence of their small size. 相似文献
6.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces. 相似文献
7.
A thermodynamic analysis is employed to investigate the intrinsic electrocaloric effect of Pb(Zr1 − xTix)O3 solid solution system under the different electric field. Theoretical analysis indicates that Pb(Zr1 − xTix)O3 system has the giant electrocaloric coefficient and the large adiabatic temperature change near its ferroelectric Curie temperature. The applied electric field decreases not only the electrocaloric coefficient but also its temperature dependence. Furthermore, it increases the adiabatic temperature change as well as its dependence of temperature. The temperature corresponding to the maximum of electrocaloric coefficient and adiabatic temperature change increases with the enhancement of electric field because of its first-order phase transition between ferroelectric phase and paraelectric phase. 相似文献
8.
We present the preparation of C54 TiSi2 nanoislands on Si (1 1 1) with a method of the pulsed laser deposition of titanium oxide thin films. The TiO2 thin films with nominal thicknesses of 1 nm on Si (1 1 1) were annealed at 850 °C for about 4 h in situ. The X-ray diffraction patterns and the X-ray photoelectron spectra indicate that the nanoislands are in C54 TiSi2 phase. The characterization using a scanning tunneling microscope shows that the nanoislands with triangular, polygonal and rod-like shapes on Si (1 1 1) exhibit the Volmer-Weber growth mode. The sizes of the polygonal islands distribute in two separated ranges. For the small islands, they have a narrow lateral size distribution centered at 4 nm and a height range in 0.6-3.6 nm, while for the large islands, their lateral sizes are in the range of 12-40 nm and the heights in the range of 4-9 nm. The sizes of the well-shaped triangular islands are intermediate with the lateral sizes in range of 5-20 nm and the heights of 2-3.5 nm. The rod-like islands are about 50-200 nm in length, 5 nm in height and about 15-20 nm in width. The origination of the various shapes of the nanoislands is attributed to the symmetry of Si (1 1 1) substrate and the lattice mismatch between the C54 TiSi2 and the Si (1 1 1) surface. 相似文献
9.
pH-dependent aggregation of thiol-capped CdTe quantum dots (QDs) in solutions was observed with a confocal microscope. The average size of the QD aggregates increased from 28 nm to 1.4 μm as the pH decreased from 12 to 3. The basic condition improved the dispersion of QDs while the acidic condition caused the detachment of surface ligands, leading to the aggregation of QDs. A PL lifetime of 80 ns was detected for QDs at pH from 12 to 7, while it was shortened to 57 and 34 ns at pH 5 and 3, respectively, due to the formation of surface defects. 相似文献
10.
A series of PdxNi1 − x nanoparticles in a diameter of 6-7 nm were prepared by wet chemical reduction. They were then modified with two surfactants, stearic acid (SA) and polyethylene glycol (PEG). Desorption of the surfactant was studied using a temperature programmed desorption technique, and the sintering behavior of surface-modified PdxNi1 − x nanoparticles was examined. Since surface energy of the nanoparticles depends on the alloy composition, it can be correlated with the desorption temperature of surfactant from the nanoparticle surface. Because Ni has a higher surface energy, the surfactant desorption temperature increases as the Ni content increases. With the same stoichiometry, the desorption temperature of SA is always higher than that of PEG. The SA-modified nanoparticles have higher thermal stability and are less sintered than PEG-modified nanoparticles. The sintering and growth behavior of the nanoparticles can be correlated with variation of surface energy due to different surface modification. 相似文献
11.
Multiple stacked self-assembled (In1−xMnx)As quantum-dot (QD) arrays were grown on GaAs (100) substrates by using molecular-beam epitaxy with a goal of producing (In1−xMnx)As QDs with a semiconductor phase and a high ferromagnetic transition temperature (Tc). Atomic force microscopy, magnetic force microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray fluorescence measurements showed that crystalline multiple stacked (In0.84Mn0.16)As with symmetric single-domain particle were formed on GaAs substrates. Near-field scanning optical spectroscopy spectra at 10 K for the (In0.84Mn0.16)As multiple stacked QDs showed that the band-edge exciton transitions were observed. The magnetization curve as a function of the magnetic field at 5 and 300 K indicated that the multiple stacked (In0.84Mn0.16)As QDs were ferromagnetic, and the magnetization curve as a function of the temperature showed that the Tc was as high as 400 K. These results provide important information on the optical and magnetic properties for enhancing the Tc of (In1−xMnx)As-based nanostructures. 相似文献
12.
Lifang Liao 《Journal of luminescence》2011,131(2):322-327
High-quality CdTeSe colloidal nanocrystals with gradient distribution of components, consisting of Te-rich inner cores and Se-rich outer shells, were synthesized in a “green” solvent paraffin via a noninjection one-pot approach with the use of cadmium oxide (CdO), elemental tellurium, and elemental selenium as Cd, Te, and Se sources, respectively. All of these reactants were loaded at room temperature. This features synthetic reproducibility and large-scale capability. The bandgap engineering of the obtained CdTeSe QDs can be conveniently realized through the variation of growth temperature. Red- to near-infrared-emitting (620-780 nm) QDs with nearly identical particle sizes can be obtained when the reaction temperature was changed from 180 to 280 °C with the fixation of precursor feed ratio at 5Cd-0.5Te-0.5Se. The as-prepared CdTeSe QDs exhibit PL QY as high as 53%. The resulting CdTeSe QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy. 相似文献
13.
Hongxia Wang Wei Zhang Faling Zhang Yuan Cao Wenhui Su 《Journal of magnetism and magnetic materials》2008
NiFe2O4/SiO2 nanocomposites were prepared using a sol–gel method with the addition of 3-aminopropyltrimethoxysilane (APS). Different phases and morphologies of NiFe2O4/SiO2 nanocomposites were obtained when different amounts of APS were used. The structural properties of the products were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Sheet-like morphology was observed at higher molar ratio of APS to NiFe2O4, while spherical NiFe2O4/SiO2 nanoparticles separated from each other were formed at lower molar ratio of APS to NiFe2O4. The magnetic properties of the nanocomposites were also investigated, indicating that the interparticle interactions exhibit strong dependence on the molar ratio of APS to NiFe2O4. 相似文献
14.
Ge self-assembled quantum dots (SAQDs) grown on a relaxed Si0.75Ge0.25 buffer layer were observed using an atomic force microscopy (AFM) and a transmission electron microscopy (TEM). The effect of buried misfit dislocations on the formation and the distribution of Ge SAQDs was extensively investigated. The Burgers vector determination of each buried dislocation using the g·b = 0 invisibility criterion with plane-view TEM micrographs shows that Ge SAQDs grow at specific positions related to the Burgers vectors of buried dislocations. The measurement of the lateral distance between a SAQD and the corresponding misfit dislocation with plane-view and cross-sectional TEM images reveals that SAQDs form at the intersections of the top surface with the slip planes of misfit dislocations. The stress field on the top surface due to misfit dislocations is computed, and it is found that the strain energy of the misfit dislocations provides the preferential formation sites for Ge SAQDs nucleation. 相似文献
15.
Y. Gu Igor L. Kuskovsky R.D. Robinson G.F. Neumark S.P. Guo M.C. Tamargo 《Solid State Communications》2005,134(10):677-681
The composition and size of optically active CdxZn1−xSe/ZnSe quantum dots are estimated with a previously developed method. The results are then compared with those obtained for CdxZn1−xSe/Zn0.97Be0.03Se QDs. We show that introducing Be into the barrier material enhances both Cd composition and quantum size effect of optically active quantum dots. 相似文献
16.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers. 相似文献
17.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface. 相似文献
18.
X-ray photoelectron spectroscopy characterization of the layered intercalated compound K2xMn1 − xPS3
Polycrystalline powders of the layered MnPS3 compound have been intercalated with K+ ions by ion-exchange to yield the K2xMn1 − xPS3 intercalate. X-ray photoelectron spectroscopy has been applied to learn about the electronic structure of this compound. In particular, we have studied the XPS spectra of the Mn 2p and 3p, P and S 2p, K 2p and 3p core levels and of the valence band region. The binding energies for various core levels of the elements present in this compound and their observed chemical shifts are analyzed. The data give evidence for the lack of non-equivalent atoms of K, Mn, P and S. Shake-up satellites are present at the Mn 2p and 3p core levels. The occurrence of such lines allows us to hypothesize that K2xMn1 − xPS3 is a large-gap insulating Mn compound. Confirmation that only an ion transfer accompanies the intercalation process is given from both the strong observed similarity with the corresponding XPS spectra in MnPS3 and the observed binding energy positions of the K 2p and 3p levels. As regards the valence band XPS spectrum, the observed analogies with the corresponding XPS spectra of the pure compound and of other K compounds have allowed us to single out two regions and their probable contributors. 相似文献
19.
This Letter reports on structural and photoluminescence properties of Zn1 − xMnxO nanocrystalline powders, which were synthesized by using oxalate precursor decomposition method. From the XRD features, we have noticed that all samples exhibit wurtzite crystal structure. The origin of photoluminescence properties of Mn doped and undoped ZnO have been discussed. 相似文献
20.
C.S. Guo 《Solid State Communications》2006,137(10):549-552
The structural and electronic properties of the armchair Cx(BN)y nanotubes are studied using the density functional theory with a generalized gradient approximation. The results show that the properties of the Cx(BN)y nanotubes are intermediate between those of carbon nanotubes and BN nanotubes, and also adjustable by their radius, ratio of carbon component, and configurations. 相似文献