首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature and composition on the inflection point in the time–conversion curve and the saturated conversion was investigated in the radiation-induced radical polymerization of binary systems consisting of a glass-forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA)–triacetin and hydroxyethyl methacrylate (HEMA)–propylene glycol systems, the time–conversion curve has an inflection point at polymerization temperatures between Tvm (Tv of monomer system) and Tvp (Tv of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. Tv was found to be 30–50°C higher than Tg (glass transition temperature) and a monotonic function of composition (monomer–polymer–solvent). The acceleration effect continued to 100% conversion above Tvp, and no acceleration effect was observed below Tvm. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between Tgm (Tg of monomer system) and Tgp (Tg of polymer system). Tg was also a monotonic function of composition. No saturation in conversion was observed above Tgp, and no polymerization occurred below Tgm. In the polymerization of completely heterogeneous systems such as HEMA–dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% above Tg of pure HEMA, and no polymerization occurred below this temperature in this system.  相似文献   

2.
Radiation-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) was investigated. HEMA and GMA formed a stable supercooled or glassy phase by themselves at low temperatures. It was found that the initial polymerization rate was proportional to ca.0.5 power of the dose rate in the region of relatively high temperatures and the dose rate exponent changed sharply to 1.0 at a temperature Tr, at which the viscosity of monomeric systems reached ca. 103 cP as the temperature decreased. Moreover, a maximum in the polymerization rate–temperature curve occurred at Tv. It was deduced that the polymerization mechanism changed from the stationary to the nonstationary at Tv. The temperature at which a minimum of the polymerization rate occurred could be calculated kinetically considering the viscosity dependency of termination rate, and it agreed well with that obtained experimentally. It was deduced that occurrence of the minimum polymerization rate above Tv was attributable mainly to the decrease in termination rate due to diffusion control.  相似文献   

3.
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by Tg (glass transition temperature) and Tv of the system (30–50°C higher than Tg), which turned to be functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the Tg of the glass-forming solvent. The composition and temperature dependences in the glycidyl methacrylate–triacetin system as a typical homogeneous polymerization system were studied in detail, and the polymerizations of hydroxyethyl methacrylate–triacetin and hydroxyethyl methacrylate–isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower Tg monomer and higher Tg solvent and the latter typifies a system consisting of higher Tg monomer and lower Tg solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to Tv and Tg of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect.  相似文献   

4.
Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation; similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at Tv which shifted to higher levels of temperature as well as to Tg under high pressure. Polymerizability in the supercooled state also increased under increased pressure.  相似文献   

5.
The radiation-induced polymerization of glass-forming systems containing monomers has been investigated. It was found that irradiation below the second-order transition temperature Tg of the systems causes no in-source polymerization but causes a rapid postpolymerization on warming above the Tg after initial irradiation below the Tg. The post-polymerization was followed by differential thermal analysis and ESR spectra. It is caused above the Tg by the release of peroxy radicals trapped below the Tg, and its rate is proportional to the irradiation dose to some extent, often is explosively high, and brings about a remarkably large temperature rise by accumulation of polymerization heat. Irradiation above the Tg causes rapid in-source polymerization which is accelerated by the high viscosity of the monomeric system between Tg and Ts (WLF temperature) compared to crystal or ordinary solution polymerization. The temperature dependence of the in-source polymerization of glassy systems shows a peak between the Tg and Ts which may be the result of competing effects of the rate increase by the decreased termination near Ts and the rate decrease by the decreased propagation caused by the diffusion prevented near the Tg. The degree of polymerization was also investigated. The temperature dependence of the degree of polymerization of the polymers obtained by in-source polymerization shows a peak similar to that of the temperature dependence of conversion. Unusually large values of the Huggins constant k' are noted between Tg and Ts. The degree of polymerization of the polymer obtained by post-polymerized increases with the increase of irradiation dose and the polymerization rate; this may be the result of decreased chain transfer to nonpolymerizable components.  相似文献   

6.
Kinetics of the in situ bulk polymerization of methyl methacrylate in the presence of organomodified montmorillonite (MMT) was investigated using differential scanning calorimetry (DSC) and gravimetrically. Different amount and types of MMT under the trade names Cloisite were employed. Using DSC, the amount of heat released versus time, under isothermal conditions, was recorded, and eventually, the time evolution of polymerization rate and monomer conversion was calculated. Results on the variation of monomer conversion with reaction time were in good agreement to corresponding from the gravimetric measurements. The nanocomposites prepared were characterized with WAXD, TEM and FTIR, and their glass transition temperature, T g, was measured with DSC. Depending on the added amount of nano-MMT, either exfoliated or intercalated structures were obtained. An enhancement of the polymerization rate with the presence of the nanoparticles was observed especially in the gel effect region. This was accompanied by a higher T g and average molecular weight, as measured by GPC, of all nanocomposites compared to neat PMMA.  相似文献   

7.
Thin films of 3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexane carboxylate were UV irradiated (1.1 J cm-2) under isothermal conditions ranging from 0 to 50°C. Under these conditions the polymerization advanced quickly but only to a conversion level of less than 10% before the reaction rate slowed by more than an order of magnitude. This drop off in rate was not caused by the glass transition temperature, T g, reaching or exceeding the reaction temperature, T rxn, since the epoxide's T g remained at least 40°C below T rxn. Raising the sample temperature above 60°C caused a sharp increase in the conversion level. At 100°C conversion exceeds 80% and the ultimate T g approaches 190°C. The addition of 10 mass% 1,6-hexanediol, HD, to the epoxy caused the conversion at room temperature to quintuple over the level obtained without the alcohol present. The heat liberated from this alcohol epoxy blend during cure on a UV conveyor belt system caused the sample's temperature to increase by about 100°C above ambient whereas the epoxy alone under these conditions only experienced a modest temperature rise of about 26°C. If the amount of HD in the blend is increased above 10% the heat of reaction at 23°C decreases due to HD being trapped in a nonreactive crystalline phase. Boosting reaction temperatures above 50°C melts the HD crystals and yields significantly improved conversion ratios. As the level of alcohol blended with the epoxy is raised its ultimate T g is lowered and when the concentration of alcohol in the blend nears 30 mass%T g drops below room temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
SG1-based amphiphilic macroinitiators were synthesized from oligoethylene glycol methyl ether methacrylate and 10 mol% acrylonitrile or styrene (as the controlling comonomer) to conduct the nitroxide mediated polymerization of bio-based methacrylic monomers (isobornyl methacrylate (IBOMA) and C13 alkyl methacrylate (C13MA)) in miniemulsion. The effect of the addition of surfactant (DOWFAX 8390), co-stabilizer (n-hexadecane) and different reaction temperatures (80, 90 and 100°C) on polymerization kinetics was studied. We found that the NMP of IBOMA/C13MA using amphiphilic macroalkoxyamines were most effective during miniemulsion polymerization (linear trend of Mn versus conversion and high latex stability) in presence of 2 wt% surfactant and 0.8 wt% co-stabilizer (relative to monomer) at 90°C. The effect of surfactant, co-stabilizer and temperature on particle size during the polymerization was studied and suggested a decrease in initial particle size with the addition of surfactant and co-stabilizer. Finally, the thermal properties of IBOMA/C13MA polymers, prepared by amphiphilic macroinitiators, were examined thoroughly, indicating a Tg in the range of −44°C < Tg < 109°C.  相似文献   

9.
Julolidine malononitrile 3 was used as a fluorescent probe for high-conversion (free-radical) bulk polymerization of methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, ethyl acrylate, styrene, and the copolymerization of styrene/n-butyl methacrylate. The fluorescence of the probe increased gradually as polymer conversion increased. This was followed by an abrupt rise in fluorescence intensities by a factor of 3 to 40 depending on the polymer formed. Finally the fluorescence intensities leveled off as the polymer limiting conversion was reached. The polymerization region in which fluorescence intensity increases sharply seems to correspond to the increase of the rigidity of the medium at the glass transition. A correlation between the limiting quantum yield of fluorescence of the dye and the polymer glass transition Tg and expansion coefficient α was found. These results were interpreted in terms of rotation-dependent nonradiative decay which links the excited-state conformation to the rigidity of the medium.  相似文献   

10.
Electron beam-induced polymerization of trimethylolpropane triacrylate (TMPTA) and its methacrylate analog (TMPTMA) was studied using nuclear magnetic resonance (NMR) relaxation time measurements. Free induction decays (FID) of partially polymerized samples consist of a short Gaussian component and a longer component comprised of a distribution of simple exponentials. The relative intensity of the Gaussian component increases with radiation dose. T1 and T values were measured as a function of temperature and radiation dose. The relaxation is due primarily to methyl group reorientation at low temperatures, ethyl group reorientation at intermediate temperatures, and whole-molecule reorientation at high temperatures. In both compounds, the T1 and T values at the high temperature minima increase with increasing dose, and the minima values can be used to estimate the degree of polymerization. The temperature at which the T minimum occurs increases with dose, suggesting an increase in the glass transition temperature, Tg, with polymerization. The polymerization appears to have very little effect on the low temperature CH3 reorientation in TMPTA. In TMPTMA the polymerization appears to reduce the mobility of the methacrylate methyl groups.  相似文献   

11.
The initial stage in the radiation polymerization of the hydroxyethyl methacrylate water system at low temperatures was studied. The polymerization was accelerated by the presence of water; the effect increased with rising temperature above Tg. The polymerization rate had a maximum near ?50°. The initiating and propagating radicals were identified by studies with ESR. Irradiated hydroxyethyl methacrylate at low temperatures gave a 7-line spectrum, which was assigned to the initiating radical having equivalent protons. This spectrum was changed to a 9-line spectrum at ?120 to ?100°; it was assigned to the propagating radical. The temperature dependence of the ESR spectrum of irradiated hydroxyethyl methacrylate-water systems was studied to examine the effect of water on the propagating radical.  相似文献   

12.
By using a simple treatment for the kinetics of radical polymerization with primary radical termination, the ratio kty/ktx of chain termination rate constant kty at conversion y to that ktx at conversion x and the ratio ktiy/ktix of the primary radical termination rate constant ktiy at conversion y to ktix at conversion x were calculated for the polymerizations of methyl methacrylate and ethyl acrylate in the conversion range 0 to 0.4. kty/ktx and ktiy/ktix were treated by using the following equations based on the variation of conversion: where g(T,y) is the average fractional free volume of radical chain end at conversion y and absolute temperature and β(T) is a function depending on T, and where gi(T,y) is the average fractional free volume of primary radical at conversion y and T and βi(T) is a function depending on T. The autoacceleration for the above monomers was successfully interpreted by the above treatment.  相似文献   

13.
The influence of stereoregular poly(methyl methacrylate) (PMMA) as a polymer matrix on the initial rate of radical polymerization of methyl methacrylate (MMA) has been measured between ?11 and +60°C using a dilatometric technique. Under proper conditions an increase in the relative initial rate of template polymerization with respect to a blank polymerization was observed. Viscometric studies showed that the observed effect could be related to the extent of complex formation between the polymer matrix and the growing chain radical. The initial rate was dependent on tacticity and molecular weight of the matrix polymer, solvent type and polymerization temperature. The accelerating effect was most pronounced (a fivefold increase in rate) at the lowest polymerization temperature with the highest molecular weight isotactic PMMA as a matrix in a solvent like dimethylformamide (DMF), which is known to be a good medium for complex formation between isotactic and syndiotactic PMMA. The acceleration of the polymerization below 25°C appeared to be accompanied by a large decrease in the overall energy and entropy of activation. It is suggested that the observed template effects are mainly due to the stereoselection in the propagation step (lower activation entropy Δ Sp?) and the hindrance of segmental diffusion in the termination step (higher activation energy Δ Et?) of complexed growing chain radicals.  相似文献   

14.
Nanoscale poly(methyl methacrylate) (PMMA) particles were prepared by modified microemulsion polymerization. Different from particles made by traditional microemulsion polymerization, the particles prepared by modified microemulsion polymerization were multichain systems. PMMA samples, whether prepared by the traditional procedure or the modified procedure, had glass-transition temperatures (Tg's) greater than 120 °C and were rich in syndiotactic content (55–61% rr). After the samples were dissolved in CHCl3, there were decreases in the Tg values for the polymers prepared by the traditional procedure and those prepared by the modified process. However, a more evident Tg decrease was observed in the former than in the latter; still, for both, Tg was greater than 120 °C. Polarizing optical microscopy and wide-angle X-ray diffraction indicated that some ordered regions formed in the particles prepared by modified microemulsion polymerization. The addition of a chain-transfer agent resulted in a decrease in both the syndiotacticity and Tg through decreasing polymer molecular weight. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 733–741, 2004  相似文献   

15.
Redox emulsion polymerization to branched vinyl polymers in the presence of 2-(tert-butylperoxy)ethyl methacrylate (BPEMA), ferrous sulfate, and sodium formaldehyde sulfoxylate (SFS) is reported in this paper. The peroxide monomer BPEMA containing alkyl peroxide was designed for high stability during preparation and storage. Nuclear magnetic resonance spectroscopy (NMR), Raman, and triple-detection size-exclusion chromatography (TD-SEC) measurements were used to reveal the polymerization procedure and provide evidence of branching structure. In the case of polymerization at St100-BPEMA1.0-FeSO4 0.5-SFS0.2, the molecular weight increased and decreased with conversion below and above 75% monomer conversion, respectively. The decreasing of molecular weight with monomer conversion came from the increased viscosity of the micelle, which makes it difficult for the formed macromolecules containing vinyl group to participate into polymerization. Finally, the molecular weight reached a value of Mn. SEC = 439,200 g/mol at 92.2% conversion. In addition, the Zimm branching factor, g', also decreased and increased with conversion below and above 60% conversion, respectively, and then the g' finally attends a value of 0.41, showing high degree of branching. Branched poly(methyl methacrylate) was also prepared through this strategy, showing a versatile approach to branched vinyl polymers.  相似文献   

16.
Emulsion polymerization of methyl methacrylate (MMA) under pulsed microwave irradiation (PMI) with higher peak pulse power was studied. The effects of various parameters of PMI on the polymerization were analyzed and compared with that under conventional heating (CH) process. The results were summarized, as compared with that under CH, as follows. The amount of initiator used to reach constant conversion reduced by 50% at the same polymerization time; at the same initiator concentration 0.15 and 0.2 wt.%, the polymerization rate increased by 131% and 163%, respectively. The molecular weight of polymer obtained was 1.1-2.0 times larger than that under CH; at the same irradiation energy, the conversion achieved using a lower pulse power was greater than that using a higher pulse power. There seemed to be a factor of the irradiation energy efficiency; in other words, for the monomer conversion, the irradiation energy of low pulse power had a higher efficiency. The conversion achieved using a 3.5 μs pulse width was almost the same as that using a 1.5 μs pulse width. The results indicated that PMI had a significant non-thermal effect on the emulsion polymerization of MMA so as to effectively enhance the polymerization rate. The glass transition temperature (Tg), the polydispersity index (PDI) and the regularity of the polymer obtained using two processes were similar, indicating that the physical properties and microstructure of the polymer were not modified by the use of microwaves.  相似文献   

17.
Difunctional acrylates and methacrylate monomers have been made which are high order smectic liquid crystal (or crystalline) at room temperature. This report discusses materials with the following structure: F–S–M–S–F, where F is a functional group, acrylate or methacrylate (A or M); S is a spacer (CH2)n(n), and M is a mesogen—in this case 4,4′-dioxybiphenyl (B). They are codified as BnA or BnM where n is the number of methylenes in the spacer. High conversion with high Tg can be obtained when polymerizing in the smectic state because the reactive end groups are concentrated in a small volume and can react well with little or no diffusion. B2A, B3A, B6A, B11A, and B3M were polymerized in the smectic state and compared to polymers made at temperatures where the monomers were isotropic. High conversion was obtained below final Tg—even then, probably because the polymers were ordered. All the polymers were studied by WAXD and dynamic mechanical spectroscopy. Solid-state NMR on B3A showed that there was very high conversion of the double bonds at all temperatures. B3A photopolymerized in the smectic state (60–76°C) produced a crystalline polymer with Tg = 185°C (1 Hz). When photopolymerized at 85°C, above the isotropization temperature (Ti), a poorly organized polymer was obtained with a Tg of 155°C (1 Hz). Monomers with an odd number of methylene groups as spacers were crystalline after polymerization. With an even number of methylene groups, they lost most of their crystallinity on polymerization below Ti, but retained a low order smectic structure. Similar structures were obtained with all the monomers when they were polymerized above Ti. There was little effect of polymerization temperature on Tg when the spacers had an even number of methylene groups. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Glass transition temperatures Tg of methyl methacrylate/butyl acrylate copolymers obtained by means of atom‐transfer radical polymerization are measured using differential scanning calorimetry. Due the nature of this polymerization method an increase in molecular weight is produced as the reaction progresses, which gives rise to an increase in Tg. Simultaneously, a composition gradient with the enrichment of butyl acrylate causes a decrease in Tg. These opposite effects almost compensate each other and, therefore, no influence on the molecular weight at n < 10000 is found. This fact allows the application of the Johnston's equation and the Mayo‐Lewis terminal model to describe and predict the variation in Tg with copolymer conversion for the copolymers and under the experimental conditions investigated.  相似文献   

19.
([bis[μ-[(2,3-butanedione dioximato)(2-)-O:O′]] tetrafluorodiborato(2-)-N,N′,N″,N‴] cobalt), CoBF, has been used for the effective catalytic chain transfer of alkyl methacrylate homo- and copolymers under emulsion polymerization conditions. The catalytic chain transfer process reduces the rate of polymerization such that when the monomer is fed over 60 min the instantaneous conversion is low enough for the particle to be swollen with monomer, allowing diffusion of the catalysts between the aqueous and monomer phases. When the amount of the catalyst is reduced, the rate is increased, eventually leading to viscous, glassy particles that prevent catalyst mobility, which is observed as a breakdown in the polymerization mechanism. This can be circumvented by the addition of a 20% shot of monomer at the start of the reaction. The effective chain transfer coefficient decreases on increasing the length of the ester group of the methacrylate. The analysis of the polymers made by the technique described shows that the Tg of the polymers observe a broad transition due to the effect of chain length being pronounced at low molecular mass. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3549–3557, 1999  相似文献   

20.
Glass transition temperatures (Tgs) of P(AMA‐co‐BA) copolymers and the corresponding homopolymers, where AMA is allyl methacrylate and BA is n‐butyl acrylate, obtained by means of atom transfer radical polymerization were measured using differential scanning calorimetry. Because of the (pseudoliving) nature of this polymerization technique an increase in molecular weight (MW) is produced as the reaction progresses, which gives rise to an increase in Tgs. This increment can be adequately described by the Fox–Flory's equation in both homopolymers. However, in the spontaneous gradient copolymers of P(AMA‐co‐BA), the expected increase in Tg with the augment of the monomer conversion is compensated by the enrichment of BA as the polymerization reaction progresses. These opposite effects with respect to the Tg values almost balance each other, and therefore no significant influence on the MW or on conversion is found. This fact establishes that Tgs can be used to describe the profile of these gradient copolymers, and can be theoretically determined because of its dependence on the molar fraction in the copolymer. From this dependence on chemical composition along with the experimental behavior, a prediction of the Tg variation with the MW was performed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1845–1855, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号