首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technique of gel-permeation chromatography (GPC) has been developed as a method for measuring molecular weight distribution in pitch materials. Molecular weight calibration data were obtained from measurements made on GPC fractions collected from a standard pitch. By solubilization of the polymeric portion of pitch through a reduction with lithium in ethylenediamine, the molecular weight range for analysis was extended to in excess of 3000. Mass spectroscopy has been used to further analyze some of the GPC fractions. The GPC calibration data can be employed, with the aid of computer analysis, to determine quantitatively number-average molecular weights M?n weight-average molecular weights M?w, and molecular weight distribution D (= M?w/M?n) in pitch materials.  相似文献   

2.
Samples of poly(4,4′-isopropylidenediphenylene 1,1,3-trimethyl-3-phenylindan-4′,5- dicarboxylate) were fractionated by the column-elution, temperature-gradient technique. Selected fractions, covering a 10-fold range of molecular weight, were shown to have narrow molecular weight distributions by gel-permeation chromatography (GPC), i.e., M?w/M?n = 1.15 ± 0.10. The fractions were further characterized by viscometry, light scattering, and membrane osmometry. Characterization of the small samples (ca. 0.3 g) was facilitated by use of a low-volume light scattering cell. This allows measurements of refractive increment, light scattering, and viscosity to be performed on as little as 50 mg of sample. Molecular weights estimated by the GPC-viscometry technique were in good agreement with the values obtained by light scattering. Estimates of the perturbed coil dimensions (150–200 Å) were in satisfactory agreement with those observed experimentally. The polydispersities of the fractions, determined by osmometry and light scattering, were in fair agreement with GPC data; the latter are considered subject to less experimental uncertainty.  相似文献   

3.
Effluent from a gel-permeation chromatographic column has been simultaneously and continuously monitored with a differential refractometer and a low-angle laser light-scattering (LALLS) photometer. This provides a true and direct determination of molecular weight distribution rather than through a calibration method as obtained by conventional GPC techniques. Computer assisted data reduction provides a rapid determination of M?w, M?n, M?z, M?w/M?n, as well as a plot of molecular weight distribution. Samples of very narrow molecular weight distribution (MWD) polystyrene from Pressure Chemicals Co. and relatively wide MWD samples of poly(methyl methacrylate) in chloroform have been characterized.  相似文献   

4.
The cationic copolymerization of tetrahydrofuran and propylene oxide was studied in a batch system. Boron fluoride ethyl ether and 1,2-propanediol were used as catalyst—co—catalyst system. Number-average molecular weights M?n of various copolymers were determined by vapor-pressure osmometry (VPO) and hydroxyl endgroup analysis (OH). The VPO and OH molecular weights differed considerably. To explain the differences, several copolymers were analyzed by gel permeation chromatography (GPC). The chromatograms obtained showed for each copolymer analyzed two peaks, one located in the high molecular weight region, the other in the low molecular weight region. An attempt is made to correlate the results and to show the usefulness of GPC in the characterization of THF—PO copolymers.  相似文献   

5.
A number of samples of poly(D ,L -lactic acid) (PLA) with weight-average molecular weights M?w in the range 15,000–350,000 were prepared by a ring-opening polymerization. The molecular weight distributions (MWDs) of these samples were determined by gel permeation chromatography (GPC). The method involves a universal calibration of the columns on the basis of polystyrene standards and a rapid iteration algorithm leading to the establishment of the Mark–Houwink relationship. In addition, osmometry and viscometry data are presented. The effect of hydrolytic degradation on the MWD of two PLA samples was studied by GPC.  相似文献   

6.
Ten unfractionated poly(2,6-diphenyl-1,4-phenylene oxide) samples were examined by gel permeation chromatography (GPC) and intrinsic viscosity [η] at 50°C in benzene, by intrinsic viscosity at 25°C in chloroform, and by light scattering at 30°C in chloroform. The GPC column was calibrated with ten narrow-distribution polystyrenes and styrene monomer to yield a “universal” relation of log ([η]M) versus elution volume. GPC-average molecular weights, defined as M?gpc = \documentclass{article}\pagestyle{empty}\begin{document}$\Sigma w_i [\eta ]_i M_i /\Sigma w_i [\eta ]_i$\end{document}, wi denoting the weight fraction of polymer of molecular weight Mi, were computed from the GPC and [η] data on the polyethers. The M?GPC were then compared with the weight-average M?w from light scattering. The intrinsic viscosity (dl/g) versus molecular weight relations for the unfractionated poly(2,6-diphenyl-1,4-phenylene oxides) determined over the molecular weight range 14,000 ≤ M?w ≤ 1,145,000 are log [η] = ?3.494 + 0.609 log M?w (chloroform, 25°C) and log [η] = ?3.705 + 0.638 log M?w (benzene, 50°C). The M?w(GPC)/M?n(GPC) ratios for the polymers in the molecular weight range 14,000 ≤ M?w ≤ 123,000 approximate 1.5 according to computer integrations of the GPC curves with the use of the “universal” calibration and the measured log [η] versus log M?w relation. The higher molecular weight polymers (326,000 ≤ M?w ≤ 1,145,000) show slightly broadened distributions.  相似文献   

7.
A method has been developed for determining simultaneously the molecular weight of a broad-distribution polymer and the Mark-Houwink coefficients for that polymer type by using only GPC and intrinsic viscosity data. Standardized samples of poly(vinyl chloride), polystyrene, polybutadiene, and an experimental cycloolefin polymer were analyzed by this method. Shear-corrected intrinsic viscosities were used in all cases because of the high molecular weights involved. Molecular weight data for all samples were found to be in good agreement with molecular weight data obtained by membrane osmometry and from other GPC techniques. The proposed technique provides a means for calculating the molecular weight of a single polymer sample through universal calibration of GPC without knowledge of the Mark-Houwink coefficients for that polymer type.  相似文献   

8.
The scope of polyformal formation from nitro- and fluorodiols has been explored further with a series of α, ω-diols. Polymers with M?ns of 2000–4000 were generally obtained but M?ns approaching 10,000 are possible in some cases. Effects of monomer structure and reaction parameters on polymer molecular weight are described. The polymers were characterized by GPC, 1H-NMR, and DSC analysis.  相似文献   

9.
The resolution attainable in gel-permeation chromatography (GPC) was investigated by using columns packed with polystyrene gel particles of about 5 μ diameter and mixtures of two monodisperse poly-α-methylstyrene samples studied previously. The resolution of GPC was found comparable to that of the sedimentation velocity method and slightly better than that of precipitation chromatography. Standard polystyrene samples obtained from Pressure Chemical Co. also were measured with the same columns. It was found that weight-average to number-average molecular weight ratios (M?w/M?n) of these samples with molecular weight in the range 97,000–411,000 are smaller than 1.006. For samples with molecular weight of 10,000–51,000 and 498,000–860,000, M?w/M?n is larger than 1.006, and the width of molecular weight distributions of these samples differed. In particular, molecular weight distributions of samples with molecular weights 19,800 and 51,000 were shown to be bimodal. It is therefore concluded that GPC is useful for samples of very narrow molecular weight distribution if high-resolution columns are used.  相似文献   

10.
The possibility of evaluating with acceptable accuracy the composition of a two-polymer mixture which is well separated by GPC, was studied by using mixtures of high molecular weight polybutadiene (M?w = 4.5 × 105) and low molecular weight polyiso-butylene (M?n in the range of 103). It was concluded that a satisfactory evaluation of the composition of a polymer mixture can be achieved, provided that the variations of the refractive index with the molecular weight are taken into account for the low molecular weight polymer (the polyisobutylene).  相似文献   

11.
Abstract

In this report we show by experimental and theoretical investigations that the commonly used GPC universal calibration parameter, the intrinsic viscosity multiplied by the weight average molecular weight ([η] Mw) is incorrect. The error which can arise by using [η] M to calculate the molecular weight across the GPC chromatogram for nonuniformly branched polymers [poly(vinyl acetate) and low density polyethylene] and copolymers with compositional drift, could be very large. We also show conclusively that the number average molecular weight Mn is the correct average to use for the universal calibration parameter. We therefore recommend that our general universal Calibration parameter [η] Mn be used for calculating the molecular weight across the chromatogram for all polymer systems (linear and branched homopolymers, copolymers with or without compositional drift and for polymer blends).  相似文献   

12.
The G values of poly(methyl methacrylates) (PMMA), polycarbonates, and a polylactone for γ-radiation were determined by using a computer-assisted GPC as the primary tool for the measurement of the number-average molecular weights M?n. The accuracy and precision of the automated GPC were found to have a normalized standard deviation (σ/M?n) of less than 7%. The G value of PMMA was determined to be essentially independent of molecular weight. For low molecular weight polymers, some nonlinearity in the I/M?n versus dosage plot was observed at low dosage, i.e., about 1 Mrad.  相似文献   

13.
Linear copolymers of ethylene and butene-1 with uniform chemical microstructure and very narrow molecular weight distribution are used to study the effects of ionizing radiation. The well characterized copolymers are irradiated at room temperature with γ-rays from a 60Co source. To follow the evolution of the molecular structure with the radiation doses, changes in molecular weight averages Mn and Mw are measured by membrane osmometry, light scattering and GPC.The influence of the original linear polymer molecular weight is examined in the range of 50,000–100,000. The effects of antioxidant are explored irradiating samples with and without additive.  相似文献   

14.
A sample of high molecular weight poly(vinyl chloride) (PVC) was fractionated by classical precipitation fractionation and gel-permeation chromatography (GPC) on a preparative scale. The fractions thus obtained were characterized by light scattering, viscometry, and by the GPC method. The measured weight-average molecular weights M?w, intrinsic viscosity [η], and polydispersity index M?w/M?n values were used for the determination of the Mark-Houwink equation, [η] = KMa, for PVC in cyclohexanone (CHX) at 25°C valid for molecular weights from 100,000 to 625,000.  相似文献   

15.
Copper-amine catalyst systems which polymerize 2-methyl-6-phenylphenol to high molecular weight polymer are described. With CuCl and N,N,N ′,N′-tetramethyl-1,3-butanediamine (TMBD), an intrinsic viscosity of 1.56 dl/g was obtained. Faster rates of polymerization resulted with a CuBr-TMBD catalyst. Catalysts from other tertiary amines and mixtures of tertiary amines also produced high polymer. Pyridine and diethylamine catalyst were less active. Samples of polymer were isolated at different stages of the polymerization. Measurements of viscosity, osmotic pressure, light scattering, gel permeation, hydroxyl groups, nitrogen content, and chemical reactivity were made on the samples. Below a molecular weight value of M?n 60,000, M?n/M?w was 2.0. At higher molecular weights, there was a broadening in molecular weight distribution. No major change in the molar concentration of the “;head” endgroups with increasing molecular weight was detected by infrared analysis. However, nitrogen analyses, chemical reactivity studies, and the M?n/M?w ratio suggested the chemical nature of the “head” end had changed. The relationships between intrinsic viscosity in chloroform at 25°C and M?n and M?w for unfractionated polymer samples are log [η] = ?4.26 + 0.84 log M?n and log [η] = ?3.86 + 0.70 log M?w.  相似文献   

16.
Several important aspects of the flow in polymer melts through capillaries remain unexplored. This paper examines experimentally one such effect associated with the radial shear-stress gradient in capillaries. During capillary melt flow of a polymer with a wide molecular weight distribution, migration of the large molecules away from the region of highest shear stress, i.e., at the capillary wall, has been predicted but only modestly investigated. This effect has the potential to produce a molecular weight spectrum over the cross section of extruded polymer. Studies of distribution in shear were conducted on a well-characterized wide-distribution polystyrene (M?w = 234,000). An Instron Rheometer equipped with a long capillary (length/diameter ratio of 66.7) was used to perform the extrusion at temperatures of 160–250°C. A solvent coring procedure was used to dissolve away concentric layers of polymer from the extrudate for molecular weight analyses. The method has been shown to cut clean sections without selective extraction. Values of M?w, M?n and M?w/M?n were calculated from complete molecular weight distribution data obtained by calibrated gel permeation chromatography. For a wide range of shear rates and temperatures, no evidence for molecular fractionation was observed. Shear degradation of this polymer was found to be small. However, at high shear rates at 250°C, evidence indicating extensive shear-induced thermal degradation was found. No evidence for oxidative degradation at the extrudate surface was found at either low or high shear rates at this temperature.  相似文献   

17.
The synthetic details of solution polymerization in benzene and bulk polymerization of vinylferrocene are reported. In benzene solutions, with azobisisobutyronitrile (AIBN) as the initiator, small yields of low-polydispersity low molecular weight (M?n ? 5000) polyvinylferrocene is obtained. However, high yields can be obtained by continuous or multiple AIBN addition. Higher molecular weight polymers and binodal polymers can be obtained as the monomer concentration is increased. In bulk polymerizations, yields of 80% can be obtained. The molecular weight increases as temperature decreases from 80 to 60°C in bulk polymerizations, and an increasing amount of insoluble polymer results. The soluble portion is often binodal, the higher molecular weight node consisting of an increasingly branched structure. Lower molecular weight polymer was readily fractionated into narrow fractions from benzene–methanol systems, but higher molecular weight polymer proved impossible to fractionate into narrow fractions due to branching.  相似文献   

18.
A slow continuous addition of dichloromethana solutions of α-methylstyrene (α-MeSt) into a dichloromethane solution of 2,5-dichloro-2,5-dimethylhexane (DDH) with BCI3 (initiating system II) prepared in advance resulted, in the temperature range between ?20 and ?40°, in a quasilving polymerization of α-MeSt. At ?20°C and a 100% conversion a polymer with a very narrow molecular weight distribution is formed, M?w/M?n - 1.1. Quasiliving polymerization of α-MeSt has not been achieved with freshly prepared dischloromethane solutions of DDH with BC3 (initiating sytem I), or with solutions of BCI3 alone (initiating system III). Polarity of the polymerization medium affected molecular weight distribution (MWD) of the polymer, and the polydispersity index decreased with decreasing polarity. MWD of the polymer samples were studied by the GPC method, the structure of poly (α-methylstyrene) (Pα-MeSt) was investigated by the 1H-NMR analysis  相似文献   

19.
Abstract

The nature of the averaging process in the analysis of gel permeation chromatograms was examined for cases where the molecules in the detector cell of the apparatus were of different molecular weight and of the same molecular weight. When the molecules have the same molecular weight, the hydrodynamic volume (1), [?]M, averaged across a chromatogram was found to become KMa+1 for any molecular weight average at the elution volume corresponding to that average. [η] is intrinsic viscosity, M is molecular weight, and K and a are the appropriate Mark-Houwink constants. Thus when size separation is by molecular weight, the universal GPC calibration functions include KMn a+1 where Mn is the number average molecular weight.

Cellulose nitrate and poly(oxypropylene) were analyzed using three sets of columns and two GPC instruments. KMn a+1, KMw a+1, and [η]Mw were found to represent the hydrodynamic volume since these functions fell on the universal calibration plot for nearly nono-disperse polystyrene standards. The function [η]Mn was displaced from the polystyrene universal calibration plot by factor which equaled Mw/Mn. The slopes and intercepts of the universal calibration plots were found to be completely consistent with the slopes and intercepts of the molecular weight calibration plots showing that the Mark-Houwink constants were correct. Intrinsic viscosity - molecular weight relations were presented for 12.0–12.6%N cellulose nitrate and for low molecular weight poly(oxypropylene), the latter relation being a correction of that of Sholtan and Lie (18).  相似文献   

20.
Molecular weight distributions determined by gel permeation chromatography demonstrate that α-methylstyrene copolymerizes with both β-pinene and styrene, forming both bi- and terpolymers. The composition of precipitated polymer versus crude polymer, as determined by nuclear magnetic resonance, suggests that β-pinene and styrene also copolymerize. Extraction of the latter bipolymer of β-pinene and styrene with acetone gives only a small amount of insoluble β-pinene homopolymer, confirming that β-pinene and styrene copolymerize in m-xylene. GPC analysis shows that each copolymer contains some homopolymer. A comparison of M n with molecular weight calculated from NMR analysis, assuming chain transfer to solvent, indicates that chain transfer is the predominant method of forming dead polymer. The carbonium ions of the growing chain tend to transfer to solvent with increasing ease in the order β-pinene, styrene, and α-methylstyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号