首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Radiation-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) was investigated. HEMA and GMA formed a stable supercooled or glassy phase by themselves at low temperatures. It was found that the initial polymerization rate was proportional to ca.0.5 power of the dose rate in the region of relatively high temperatures and the dose rate exponent changed sharply to 1.0 at a temperature Tr, at which the viscosity of monomeric systems reached ca. 103 cP as the temperature decreased. Moreover, a maximum in the polymerization rate–temperature curve occurred at Tv. It was deduced that the polymerization mechanism changed from the stationary to the nonstationary at Tv. The temperature at which a minimum of the polymerization rate occurred could be calculated kinetically considering the viscosity dependency of termination rate, and it agreed well with that obtained experimentally. It was deduced that occurrence of the minimum polymerization rate above Tv was attributable mainly to the decrease in termination rate due to diffusion control.  相似文献   

2.
The effect of temperature and conversion on the polymerization rate at higher conversion was investigated with regard to the γ-ray-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the supercooled phase. The polymerization rate changed from acceleration to depression at various conversions, depending on the polymerization temperature. It was found that Tv at which the viscosity of the system became ca. 103 cpoise influenced the shape of the polymerization time–conversion curve. The experimentally obtained conversion reflection point in the polymerization time–conversion curve agreed with the conversion where the polymerization temperature is the same as the calculated Tv of the system. When the polymerization temperature was lower than Tv of the monomer, no acceleration of the polymerization occurred. When the polymerization temperature was higher than Tv of the polymer, no depression of the polymerization rate was observed. The effect of temperature on the saturated conversion (final conversion) was also examined in terms of Tg of the polymerization system. The experimentally obtained saturated conversion agreed with the conversion where the polymerization temperature is the same as the calculated Tg of the system.  相似文献   

3.
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA–propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA–triacetin and HEMA–isoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore, in the HEMA–dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA–poly(methyl methacrylate) system were also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate.  相似文献   

4.
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by Tg (glass transition temperature) and Tv of the system (30–50°C higher than Tg), which turned to be functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the Tg of the glass-forming solvent. The composition and temperature dependences in the glycidyl methacrylate–triacetin system as a typical homogeneous polymerization system were studied in detail, and the polymerizations of hydroxyethyl methacrylate–triacetin and hydroxyethyl methacrylate–isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower Tg monomer and higher Tg solvent and the latter typifies a system consisting of higher Tg monomer and lower Tg solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to Tv and Tg of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect.  相似文献   

5.
The radiation-induced polymerization of glass-forming systems containing monomers has been investigated. It was found that irradiation below the second-order transition temperature Tg of the systems causes no in-source polymerization but causes a rapid postpolymerization on warming above the Tg after initial irradiation below the Tg. The post-polymerization was followed by differential thermal analysis and ESR spectra. It is caused above the Tg by the release of peroxy radicals trapped below the Tg, and its rate is proportional to the irradiation dose to some extent, often is explosively high, and brings about a remarkably large temperature rise by accumulation of polymerization heat. Irradiation above the Tg causes rapid in-source polymerization which is accelerated by the high viscosity of the monomeric system between Tg and Ts (WLF temperature) compared to crystal or ordinary solution polymerization. The temperature dependence of the in-source polymerization of glassy systems shows a peak between the Tg and Ts which may be the result of competing effects of the rate increase by the decreased termination near Ts and the rate decrease by the decreased propagation caused by the diffusion prevented near the Tg. The degree of polymerization was also investigated. The temperature dependence of the degree of polymerization of the polymers obtained by in-source polymerization shows a peak similar to that of the temperature dependence of conversion. Unusually large values of the Huggins constant k' are noted between Tg and Ts. The degree of polymerization of the polymer obtained by post-polymerized increases with the increase of irradiation dose and the polymerization rate; this may be the result of decreased chain transfer to nonpolymerizable components.  相似文献   

6.
《Liquid crystals》2000,27(9):1239-1248
The formerly implemented molecular design concept behind glass-forming liquid crystals (gLCs) was generalized by increasing the volume of the non-mesogenic central core, with an attendant increase in the number of nematic pendants, using 5-hydroxyisophthalic acid as the bridging unit. New nematic gLCs were synthesized and characterized, showing an elevation in Tg by 30 to 40°C with no definite trend in Tc over the benzene, cis, cis-cyclohexane, and exo, endo-bicyclo[2.2.2]oct-7-ene base cores. The exo, exo-configured gLC showed a higher Tg and a higher T c than the exo, endo-counterpart. Morphological characterization with X-ray diffractometry revealed the non-crystalline nature of pristine samples and the morphological stability of thermally processed gLC films against recrystallization for six months. Nematic gLC films were prepared for characterization by FTIR linear dichroism, resulting in an orientational order parameter in the range 0.52 to 0.63. A chiral-nematic gLC derived from exo, exo-bicyclo[2.2.2.]oct-7-ene also showed an elevation in Tg by 10 to 20°C over the cyclohexane-based systems reported previously. With (S)-(-)-1-phenylethylamine as the chiral moiety, the left-handed, chiral-nematic gLC film yielded a selective reflection band centred around 375 nm. Tunability of selective reflection from the UV to visible region was demonstrated by mixing the chiral-nematic and nematic gLCs at varying ratios.  相似文献   

7.
The formerly implemented molecular design concept behind glass-forming liquid crystals (gLCs) was generalized by increasing the volume of the non-mesogenic central core, with an attendant increase in the number of nematic pendants, using 5-hydroxyisophthalic acid as the bridging unit. New nematic gLCs were synthesized and characterized, showing an elevation in Tg by 30 to 40°C with no definite trend in Tc over the benzene, cis, cis-cyclohexane, and exo, endo-bicyclo[2.2.2]oct-7-ene base cores. The exo, exo-configured gLC showed a higher Tg and a higher T c than the exo, endo-counterpart. Morphological characterization with X-ray diffractometry revealed the non-crystalline nature of pristine samples and the morphological stability of thermally processed gLC films against recrystallization for six months. Nematic gLC films were prepared for characterization by FTIR linear dichroism, resulting in an orientational order parameter in the range 0.52 to 0.63. A chiral-nematic gLC derived from exo, exo-bicyclo[2.2.2.]oct-7-ene also showed an elevation in Tg by 10 to 20°C over the cyclohexane-based systems reported previously. With (S)-(-)-1-phenylethylamine as the chiral moiety, the left-handed, chiral-nematic gLC film yielded a selective reflection band centred around 375 nm. Tunability of selective reflection from the UV to visible region was demonstrated by mixing the chiral-nematic and nematic gLCs at varying ratios.  相似文献   

8.
Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation; similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at Tv which shifted to higher levels of temperature as well as to Tg under high pressure. Polymerizability in the supercooled state also increased under increased pressure.  相似文献   

9.
The effect of temperature and composition on the inflection point in the time–conversion curve and the saturated conversion was investigated in the radiation-induced radical polymerization of binary systems consisting of a glass-forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA)–triacetin and hydroxyethyl methacrylate (HEMA)–propylene glycol systems, the time–conversion curve has an inflection point at polymerization temperatures between Tvm (Tv of monomer system) and Tvp (Tv of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. Tv was found to be 30–50°C higher than Tg (glass transition temperature) and a monotonic function of composition (monomer–polymer–solvent). The acceleration effect continued to 100% conversion above Tvp, and no acceleration effect was observed below Tvm. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between Tgm (Tg of monomer system) and Tgp (Tg of polymer system). Tg was also a monotonic function of composition. No saturation in conversion was observed above Tgp, and no polymerization occurred below Tgm. In the polymerization of completely heterogeneous systems such as HEMA–dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% above Tg of pure HEMA, and no polymerization occurred below this temperature in this system.  相似文献   

10.
The post-polymerization of methacrylic acid in the solid state was studied. The decay of the trapped radicals was also observed by ESR measurements. The decay of trapped radicals is a first-order reaction below 0°C but a second-order reaction at + 10°C. The results of the post-polymerization were compared with the results of radical decay measurements. A kinetic scheme was proposed for the post-polymerization of methacrylic acid. The effect of conditions of monomer crystallization on the polymer yield was also investigated. Fine crystals gave a greater limiting conversion than large crystals. The addition of water to the monomer increased the polymer yield. The change in the ESR spectrum during post-polymerization was interpreted in terms of the change in the matrix which surrounds the propagating radicals.  相似文献   

11.
12.
The following properties are in the present literature associated with the behavior of supercooled glass-forming liquids: faster than exponential growth of the relaxation time, dynamical heterogeneities, growing point-to-set correlation length, crossover from mean-field behavior to activated dynamics. In this paper we argue that these properties are also present in a much simpler situation, namely the melting of the bulk of an ordered phase beyond a first order phase transition point. This is a promising path toward a better theoretical, numerical and experimental understanding of the above phenomena and of the physics of supercooled liquids. We discuss in detail the analogies and the differences between the glass and the bulk melting transitions.  相似文献   

13.
The effect of reaction conditions on the rate of radiation-induced emulsion polymerization of ethylene was studied by use of a 500-ml autoclave. Among various kinds of emulsifiers, a series of potassium salts of fatty acids gave high rates of the polymerization. The polymerization was inhibited by the presence of oxygen, but the rate of polymerization followed by the induction period was not influenced by the initial presence of oxygen. Stirring rate and the monomer: water ratio did not affect the rate of polymerization. The rate of polymerization was maximum at about 80°C, and number-average molecular weight was influenced by the temperature in a similar manner as the rate of polymerization. This suggests that the change of mobility of propagating radical in the polymer particle changes the rate of termination reaction. The rate of polymerization was proportional to the 1.7 power of the reaction pressure.  相似文献   

14.
Radiation-induced emulsion polymerization of ethylene with ammonium perfluoro-octanoate as an emulsifier was studied in order to elucidate the effect of the number of polymer particles. Owing to the stable structure of the emulsifier from a radical attack, no C? F bond was detected in the polyethylene as expected. The polyethylene produced was mostly gel containing a small amount of low molecular weight polyethylene. This may be attributable to chain transfer to the polyethylene. The effects of dose rate and of concentration of the emulsifier were determined without considering the chain-transfer reaction to the emulsifier. By considering the escape of the radical which is produced by chain transfer to the monomer from the polymer particle to the aqueous phase at the steady state, the following equation is derived: The experimental results could be explained by this equation, and the apparent rate constants were obtained.  相似文献   

15.
There are deep analogies between the melting dynamics in systems with a first-order phase transition and the dynamics from equilibrium in super-cooled liquids. For a class of Ising spin models undergoing a first-order transition--namely p-spin models on the so-called Nishimori line--it can be shown that the melting dynamics can be exactly mapped to the equilibrium dynamics. In this mapping the dynamical--or mode-coupling--glass transition corresponds to the spinodal point, while the Kauzmann transition corresponds to the first-order phase transition itself. Both in mean field and finite dimensional models this mapping provides an exact realization of the random first-order theory scenario for the glass transition. The corresponding glassy phenomenology can then be understood in the framework of a standard first-order phase transition.  相似文献   

16.
The anomalous crystalline transition of methacrylic acid found by broad-line NMR measurements was studied in connection with the build-up and decay of trapped radicals. The build-up of radicals is smaller and the decay rate of the trapped radicals is faster in the low-temperature range (phase II), which gave the narrower maximum slope distance ΔHmsl of the NMR spectrum, than those in the higher temperature range (phase I), which gave the broader ΔHmsl. From these experiments it was concluded that in phase I the crystals have a more closely packed structure, resulting in a more rigid matrix for the trapped radicals than those in phase II. This interpretation is consistent with the temperature dependence of the ESR spectrum of the trapped propagating radicals previously reported. The existence of the crystalline transition was also confirmed by DSC measurements, and the effects of the crystallization conditions on the transition were investigated and were discussed with reference to the results of broad line NMR measurements.  相似文献   

17.
The radiation-induced solid-state polymerization of binary systems consisting of acrylic monomer (acrylamide, acrylic acid) and organic compounds was investigated. In the previous paper on binary systems the authors reported that the rate of polymerization increased in the solid state (eutectic mixture systems). The mechanism of rate increase has been investigated by examination of phase diagrams, viscosities, and surface tension of the binary systems. Viscosity and surface tension are the measure of the molecular interaction of the two-component systems. In addition, the effect of linear crystal growth rate and half maximum width of the x-ray diffraction diagram of the crystallization process were determined. The larger the molecular interaction between the two components, the slower the linear crystal growth rate of monomer. The size of the monomer crystal decreases and the dislocation density of the monomer crystals increases in systems with large molecular interaction. Consequently it can be concluded that the physical structure of a binary solid system is the most important parameter determining the rate increase of solid-state polymerization. Dislocation on the grain boundary is more important than defects inside of the crystal lattice. It was found that the acceleration of polymerization rate is large in binary systems with larger molecular interaction. In some systems such as organic acid—amide systems with strong hydrogen bonds, glassy phases may be formed in which monomer may readily polymerize at very low temperatures.  相似文献   

18.
The effect of temperature on transfer constants for different solvents in the polymerization of ethyl acrylate was observed. Activation energy differences (EtrS ? Ep) and frequency factors were computed. It is observed that high frequency factors are associated with high activation energies. Values of EtrS were calculated by an approximate method and were compared with the available data on methyl methacrylate, isobutyl methacrylate, and styrene.  相似文献   

19.
The aim was to determine the relevance of the glass transition temperature (Tg) on the compressibility and compactibility of different excipients as celluloses, cellulose derivatives, lactoses, starch, maltodextrin and carrageenan. Their Tg was determined, they were tableted on an instrumented eccentric tableting machine and crushing force was analyzed. Using force, time and displacement tableting behavior was analyzed by 3D modeling. The parameters obtained, d (time plasticity), e (pressure plasticity) and w (fast elastic decompression), show different deformation mechanisms for the materials in relation to their Tg. Further, if the Tg can be reversibly exceeded during tableting, crushing force is high, otherwise crushing force is lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The radiation-induced polymerization of hexafluoropropylene was studied in the pressure and temperature ranges of 4,500–15,000 atm. and 100–230°C., respectively. Retardation was a serious problem; data thought to apply to the unretarded polymerization are summarized below. At 1,500 rad/hr. the polymerization rate was 15%/hr. at 230°C. and 15,000 atm. The activation enthalpy and volume are 9.5 kcal./mole and ?10 cc./mole, respectively. The rate varies as the square root of the radiation intensity. The largest intrinsic viscosity of the polymer is 2.0 dl./g.; values increase with temperature and pressure. At 130°C. and 10,000 atm. the intrinsic viscosity was the same at two radiation intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号