首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Crosslink densities of electron beam (EB)-irradiated styrene–butadiene rubber (SBR) samples were measured by using a novel magnetic resonance crosslink density spectrometer (MRCDS). With 1,1,1-trimethylolpropane triacrylate (TMPTA) loading increasing, the crosslink density of EB-irradiated SBR increases up to a certain level, and then decreases in the irradiation dose range 50–200 kGy. Tensile strength, elongation at break, thermal stability and pyrolysis products of the EB-irradiated SBR samples with different crosslink densities were also studied in this paper.  相似文献   

3.
The ultimate properties of an unfilled styrene-butadiene rubber vulcanizate in equal biaxial tension were determined by inflating a circular membrane into a bubble. Tests were made at several extension rates (evaluated at the pole) from about 0.15 to 4 min?1 and at temperatures from ?43 to 90°C. The stress in the vicinity of the pole when rupture occurred was evaluated from the pressure, the radius of curvature, and the extension ratio λ, the latter two quantities being obtained from photographic data. Below 70°C, the ultimate extension ratio λb is approximately 5.2 and is essentially independent of extension rate and temperature, in striking contrast to the behavior in simple and constrained biaxial tension (pure shear). Likewise, the rupture stress is manyfold greater than in either simple or constrained biaxial tension. From the extremum points of failure envelopes, the maximum extension ratio (λb)max in equal biaxial tension is 5.7 and in simple tension is 7.2. An examination of ruptured membranes showed that, except at 70 and 90°C, rupture began away from the pole in a region where the stress state is unequal biaxial tension. Hence, values of the ultimate properties in truly equal biaxial tension are no doubt somewhat greater than those obtained from the membrane tests. However, it is shown that (λb)max in truly equal biaxial tension must be lower than that in simple tension by at least 10%. A consideration of rupture data in simple, constrained biaxial, and equal biaxial tension leads to the conclusion that no simple failure criterion is applicable for interrelating data obtained under the several states of combined stress. The rupture patterns and factors that affect the site of rupture initiation and the mode of crack growth are also discussed.  相似文献   

4.
Kinetics of N-methyl pyrrolidone evaporation from swollen photo-crosslinked polyacrylate was monitored thermogravimetrically at temperatures ranging from 323 to 398 K. Crosslink density dependence of evaporation kinetics was investigated in photo-crosslinked polyacrylates with crosslinked density ranging from ≈1.2 × 102 to ≈1.7 × 104 mol m−3 and number of main chain atoms between crosslinks ranging from ≈70 atoms to ≈6 atoms, respectively. As was shown, evaporation kinetics was controlled by the solvent diffusion in polymer. Activation energies of evaporation (diffusion) were deduced from the rate measurements at different temperatures. Apparent activation energy of evaporation decreased from 48.7 to 31.1 kJ mol−1 with crosslink density increase. Activation energy of pure N-methyl pyrrolidone evaporation was 50.6 kJ mol−1. Decrease of the rate of solvent diffusion and unexpected decrease of diffusion activation energy with increase of crosslink density of swollen polymer matrix was explained by decrease in polymer chain segments mobility, as indicated by Eyring’s approach to diffusion in polymers.  相似文献   

5.
The effect of the crosslink density on the morphology and properties of reaction‐injection‐molding poly(urethane urea) (PUU) elastomers was investigated. Fourier transform infrared spectroscopy data showed that the linear and crosslinked PUU had entirely different hard‐domain sizes and hard‐segment ordering. A study of the morphology indicated that an increase in the crosslink density increased microphase mixing. Differential scanning calorimetry studies indicated that the hard‐segment initial glass‐transition temperature was independent of the crosslink density. The glass‐transition temperature of the soft segment was highest when the network was perfect. The tensile‐strength behavior showed that the mechanical properties of PUU reached a maximum when the network was perfect. The increase in the resilience of the crosslinked PUU elastomer was higher than that of the linear PUU elastomer with an increase in temperature, and the reduction of the hardness of the former was also higher than that of the latter. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1126–1131, 2004  相似文献   

6.
Novel polyurethane thermoplastic elastomers were prepared from polycarbonate diols, butane-1,4-diol (chain extender) and hexamethylene diisocyanate. They differ in the kind of macrodiol used and the ratio of macrodiol to chain extender OH groups (hence, in hard segment contents). The tensile properties of the elastomers at low and elevated temperatures were determined and discussed with regard to polyurethane composition and polycarbonate diol structure.  相似文献   

7.
The temperature dependence of the viscoelastic properties of thermoreversible polybutadiene networks based on hydrogen bond linkages is analyzed from the logarithmic shift factors loga T . For binary hydrogen bond complexes thermorheologically simple behavior is observed. The temperature dependence of loga T is described by the Williams-Landel-Ferry (WLF) equation. The thermoreversible linkages cause an increase in the apparent activation enthalpy of flow which is related to the number of complexing sites in the polymer. Thermorheologically complex behavior is observed in a system with more complex association.  相似文献   

8.
Monolithic polymer matrices of different natures and different degrees of crosslinking have been synthesized in capillaries with an inner diameter of 100 μm. The properties of the monolithic matrices are characterized by reversed-phase gas chromatography. Solubility coefficient S, Flory-Huggins parameter gC12, and reduced Flory-Huggins parameter gC12 are evaluated. For all tested sorbates, the values of S depend on the degree of crosslinking of the polymer, which is characterized by parameter gC12. In the case of all monolithic polymer matrices under study, the logarithm of the solubility coefficient plotted as a function of the squared critical temperature of sorbate is described by a straight line, a circumstance that is likewise typical of linear polymers. Parameter D/d f 2, which characterizes the rate of diffusion of low-molecular-mass compounds in the monolithic matrix, is calculated. For both polar and nonpolar polymers, the dependence of D/d f 2 on the degree of crosslinking follows an extremum pattern.  相似文献   

9.
《European Polymer Journal》1986,22(4):341-345
The effects of crosslink density and crosslink type on the tensile and tear strengths of gum NR, SBR and EPDM vulcanizates have been studied. Over a wide range of crosslink densities, sulphur vulcanizates for these rubbers have higher strengths than the peroxide vulcanizates. These results show that crystallizability of the rubbers is not an important factor in producing separate curves in the strength vs crosslink density plots. Tear strengths appear to be more sensitive to crosslink structures than tensile strengths. A composite plot shows that tensile strengths are approximately proportional to tear strengths for all three rubbers.  相似文献   

10.
The effect of crosslink density on the pressure-volume-temperature (PVT) behavior and on the pressure relaxation response for two polycyanurate networks is investigated using a custom-built pressurizable dilatometer. Isobaric cooling measurements were made to obtain the pressure-dependent glass transition temperature (Tg). The pressure relaxation studies were carried out as a function of time after volume jumps at temperatures in the vicinity of the pressure-dependent Tg, and the pressure relaxation curves obtained were shifted to construct master curves by time-temperature superposition. The reduced pressure relaxation curves are found to be identical in shape and placement, independent of crosslink density, when Tg is used as the reference temperature. The horizontal shift factors used to create the master curves are plotted as a function of the temperature departure from Tg (TTg), and they agree well with their counterparts obtained from the shear response. Moreover, the retardation spectra are derived from bulk compliance and compared to those from the shear. The results, similar to our previous work on polystyrene, indicate that at short times, the bulk and shear responses have similar underlying molecular mechanisms; however, the long-time mechanisms available to the shear response, which increase with decreasing crosslink density, are unavailable to the bulk response. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2477–2486, 2009  相似文献   

11.
Torsional creep measurements on four natural rubber vulcanizates, crosslinked to different degrees, were carried out in the temperature range from ?50 to 90°C. This investigation complements the studies on identical samples of the stress relaxation behavior by Chasset and Thirion and of the dynamic mechanical response by Ferry, Mancke, Maekawa, ōyanagi, and Dickie. The creep measurements reported are shown to be in agreement with the stress relaxation results. In addition to the usual temperature reduction, a superposed curve was obtained for the long time response using the apparent molecular weight between crosslinks, Mc, as a reduction variable. The variation in viscoelastic response with crosslink density is interpreted as a restrictive action of the chemical crosslinks on the transient entanglement network.  相似文献   

12.
The Bose–Einstein-like ordering was earlier proposed as an important mechanism of energy handling in the living systems. In this regard two questions arise at once: (1) is such ordering feasible at body temperature and (2) what is the time that may be taken for establishing coherence? In this paper we hope to answer and satisfy these two questions.  相似文献   

13.
Knowing the mechanical properties of UV‐curable resins at cryogenic conditions is important to ongoing fusion‐energy research and to emerging aerospace applications. The tensile and interfacial shear strengths of two commercially available UV‐curable resins were measured at room‐temperature and cryogenic conditions for both bulk and reduced (subnanoliter) specimen volumes. The tensile properties of cured specimens are remarkably sensitive to both testing temperature and specimen size. For one type of resin, the cold (?150 °C) tensile strength of subnanoliter specimens is ~9× larger (179 ± 19 MPa) than bulk values at room temperature. The interfacial shear strength between SiC fibers and small volumes of resin volumes is comparable to the bulk, room‐temperature tensile strength, but it varies over a wide range at ?150 °C (15–53 MPa). All resins were fully cured, and an analysis of fractured surfaces revealed microstructural features. The enhanced strength in microscopic specimens may be related to inhomogeneous stress fields that develop during cure. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 936–945  相似文献   

14.
Enthalpy relaxation of epoxy–diamine thermosets of different crosslink lengths (CLL) has been studied by DSC. The epoxy resins based on diglycidyl ether of bisphenol A were cured with ethylenediamine (FEDA), and diamines of polyoxypropylene of 2.6 and 5.6 oxypropylene units, named FJ230 and FJ400, respectively. As was expected, increasing the CLL decreases the glass transition temperature Tg from 121°C (FEDA) to 47°C (FJ400). Aging experiments at Tg − 20 K for each resin permit the determination of the enthalpy loss, the relaxation rate per decade (βH), and the nonlinearity parameter, x. The apparent activation energy, Δh*, and the nonexponentiality parameter β are found for each resin from intrinsic cycles in which the sample is heated at 10 K min−1 following cooling at various rates through the glass transition region. An increase of CLL is related to an increase of βH, and of the nonlinearity parameter. In agreement with the general trend for thermoplastic polymers, the increase of the parameter x is correlated with a decrease of Δh* and with an increase in the nonexponentiality parameter. Application of the Adam–Gibbs (AG) theory reveals that the parameters B and Tf/T2 increase with CLL, corresponding to a decrease of the nonlinear behavior of the glassy epoxies. However, the T2 values calculated in this way appear unrealistic, and the alternative assumption that T2 = Tg −51.6 K, making use of the “universal” WLF constant, leads to a much smaller variation of B, which nevertheless still increases with CLL. From a consideration of the minimum number of configurations required for a cooperative rearrangement, it is argued that the elementary activation energy Δμ increases, and the minimum size of the cooperatively rearranging region decreases as CLL increases. This is consistent with the relaxation process becoming more cooperative as the CLL decreases, as is suggested by the decrease in the value of β. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 456–468, 2000  相似文献   

15.
Fully cured epoxy networks having different architectures were prepared by introducing either a monoamine acting as a chain extender or an aliphatic epoxy monomer. As expected an increase in the amount of the difunctional amine leads to a decrease in the crosslink density whereas the introduction of an aliphatic epoxy comonomer leads to more flexible chains between crosslinks. Values of the Young modulus and the dependence of the yield stress as a function of temperature were related to the occurrence and amplitude of secondary relaxations. The fracture toughness at room temperature was clearly associated with the glass transition temperature as a consequence of plastic deformation, rather than with chain scission.  相似文献   

16.
This article examines the application of time–temperature superpositioning (TTS) in certain thermorheologically complex polymers using a recently developed phenomenological model that describes crosslinked polymer viscoelasticity based on fundamental physical considerations. The model's capability to calculate both isochronal temperature sweeps and isothermal frequency sweeps of storage and loss moduli allows us to simulate conditions typical of certain thermorheologically complex polymers. We use the model to generate modulus frequency sweeps over the limited range of frequencies that are typically accessible to experiments. We apply TTS to shift these sweeps along the frequency axis to construct master curves. The model master curves are then compared with the model's “true” moduli curves over the full frequency domain at the reference temperature. This comparison suggests that nonsuperposability may go unnoticed if we only rely on the smoothness of the storage modulus master curve. Superpositioning to achieve a smooth loss modulus master curve tends to be more reliable. This has serious implications for assessing the reliability of relaxation moduli and creep compliance master curves that have no associated loss component that can be used to assess the quality of superpositioning. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 127–142, 1999  相似文献   

17.
To investigate the reaction mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of pretreatment temperature of silica gel was studied. Preheating of silica gel was carried out at 200, 500, and 800°C. The number of silanol groups of silica gel surface decreased as preheating temperature increased. The rate of polymerization on the silica gel preheated at 500°C was faster than that at 200°C, but the polymerization rate on the silica gel preheated at 800°C was the lowest. These results suggest that rate of polymerization on the silica gel is affected by the conditions of silica gel surface such as the number of silanol groups and the pore size. At the same monomer conversion, percent grafting decreased as preheating temperature of silica gel increased. The GPC spectra of both graft polymers and homopolymers have two peaks at all preheating temperatures. The monomer conversion of low molecular weight peaks of graft polymers decreased as preheating temperature of silica gel increased. This result suggests that there is a probability that the grafting sites of low molecular weight peaks of graft polymers somehow interact with silanol groups.  相似文献   

18.
The Swain–Schaad relation, which relates the kinetic isotope effects of the three hydrogen isotopes, is extended by including tunneling and temperature dependence. The new version shows that the effect of tunneling on the Swain–Schaad exponent is opposite to that usually assumed and depends on the degree of assistance the tunneling receives from other vibrations.  相似文献   

19.
Structural (X‐ray diffraction), melting (differential scanning calorimetry), as well as mechanical (tensile tests) characterizations on uncrosslinked ethene–propene copolymer samples, obtained using a metallocene‐based catalytic system and having an ethene content in the range 80–50% by mol, are reported. Samples with an ethene content in the range 80–60% by mol present a disordered pseudohexagonal crystalline phase, whose melting moves from ≈ 40°C down to ≈ −20°C as the ethene content is reduced. The dramatic influence of the crystalline phase on tensile properties of uncrosslinked ethene–propene copolymers is shown. In particular, highest elongation at break values are obtained for samples being essentially amorphous in the unstretched state and partially crystallizing under stretching. On the other hand, lowest tension set values (most elastic behavior) are observed for samples presenting, already in the unstretched state, microcrystalline domains acting as physical crosslinks in a prevailing amorphous phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1095–1103, 1999  相似文献   

20.
A series of polyurethane block polymers based on hydroxybutyl-terminated polydimethyl-siloxane soft segments of molecular weight 2000 were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) which was chain extended with either 1,4-butanediol (BD) or N-methyldiethanolamine (MDEA). The MDEA-extended materials were ionized by using 1,3-propane sultone. The weight fraction of hard segments was in the range 0.13–0.39. The morphology and properties of these polyurethane elastomers were studied by a variety of techniques. All of these short-segment block copolymers showed nearly complete phase separation. The zwitterionomer materials exhibited ionic aggregation within the hard domains. Hard-segment crystallinity or ionic aggregation did not affect the morphology. Hard-domain cohesion was found to be a more important factor than hard-domain volume fraction in determining the tensile and viscoelastic properties of these elastomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号