首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the fragmentation behaviour of short, singly protonated oligoribonucleotides on a MALDI Qq-TOF instrument with the aim of using this instrumental set-up to characterise modifications of RNA molecules. Individual ion species from enzymatically generated mixtures were isolated in one quadrupole and subjected to collision-induced dissociation in a second quadrupole followed by separation of the resulting product ions in an orthogonal time-of-flight mass analyser. Complex spectra were generally observed with nearly all types of cleavages along the phosphodiester backbone and of the N-glycosidic bonds (and combinations of these) occurring, albeit at different relative intensities. The most labile part of the backbone was found to be the 5'-P-O bond, resulting in c- and y-ions. Loss of neutral cytosine and guanine occurred equally often, whereas neutral loss of adenosine was less prevalent. Loss of uracil, either neutral or charged species, was not observed. Because the fragmentation pattern observed here is significantly different from what has been reported for singly protonated oligodeoxyribonucleotides, we suggest that the 2'-substituent in the sugar plays a central role in the fragmentation mechanisms of nucleic acids. Finally, we used the acquired knowledge about oligoribonucleotide fragmentation to characterise an in vivo methylated oligoribonucleotide by tandem mass spectrometry.  相似文献   

2.
A novel matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight (MALDI QIT ToF) mass spectrometer has been used to analyse high mass peptide ions exceeding 2000 Da. Human adrenocorticotropic hormone (fragment 18-39) and oxidised bovine insulin chain B were utilised to evaluate the performance of the instrument both in MS and in MS/MS mode. Its ability to efficiently isolate ions and to fragment them using collisionally activated decomposition (CAD) has been demonstrated using mixtures diluted to the low-femtomole level on target. Additionally, multiple stage mass spectrometry (MS/MS/MS) provides a second-generation product ion spectrum in which new fragment ions are detected and new stretches of amino acids are identified.  相似文献   

3.
Oligosaccharides were derivatized by reductive amination using 2-aminobenzamide (2-AB) and analyzed by matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2-AB-derivatized oligosaccharides. A systematic study was conducted on a series of 2-AB-derivatized oligosaccharides to allow rationalization of the fragmentation processes. The MALDI-TOF/TOF-MS/MS spectra of the [M+Na]+ ions of 2-AB-derivatized oligosaccharides were dominated by glycosidic cleavages. These fragments originating both from the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, the MALDI-TOF/TOF-MS/MS spectra were also characterized by abundant cross-ring fragments which are very informative on the linkages of the monosaccharide residues constituting these oligosaccharides. MALDI-TOF/TOF-MS/MS analysis of 2-AB-derivatized oligosaccharides, by providing structural information at the low-picomole level, appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

4.
Atandem reflectron time-of-flight mass spectrometer developed in our laboratory provides a unique opportunity to investigate the collision-induced dissociation of fullerene ions formed by matrix-assisted laser desorption/ionization (MALDI). Specifically, this opportunity arises from the ability to utilize high energy collisional activation (normally available only on tandem sector instruments by using continuous ionization techniques) for ions formed by pulsed laser desorption, whereas most MALDI time-of-flight instruments record product ion mass spectra of ions formed by metastable or postsource decay. In this study we investigate the products of mass-selected and collisionally activated C 60 + and C 70 + ions by using different target gases over a range of target gas pressures. In general, heavier target gases produce more extensive fragmentation and improve the mass resolution of lower mass ionic products because a greater portion of these ions are formed by single collisions. Additionally, the tandem time-of-flight instrument utilizes a nonlinear (curved-field) reflectron in the second mass analyzer that enables high energy collision-induced dissociation spectra to be recorded without scanning or stepping the reflectron voltage.  相似文献   

5.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

6.
A refined sample preparation procedure for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was developed for the evaluation of the degree of substitution (DS) in partially depolymerised carboxymethyl cellulose (CMC). By adding ammonium sulphate to the sample mixture prior to the analysis, good quality mass spectra could be acquired. The usual time-consuming search for 'sweet-spots' at the crystalline rim of the MALDI target spot was also avoided. This quality improvement made it possible to investigate whether various positions on the target spot generated mass spectra in which the measured DS varied. The accuracy and reproducibility of the sample preparation procedure were tested by applying it on three commercial CMCs. The study shows that the DS values that were calculated from the spectra acquired from the centre region of the MALDI target spot were in better agreement with the DS provided by the supplier than were the values obtained from the large crystals at the target spot rim. This observation could be one reasonable explanation for the higher DS values reported in other publications. By applying our refined MALDI sample preparation procedure DS values that were in good agreement with the values provided by the manufacturer could be obtained. This indicates that MALDI-TOFMS of partially depolymerised CMCs can be used for an estimation of the DS as a complement to the more established methods, e.g. NMR, titrimetry, and chromatographic techniques.  相似文献   

7.
A matrix-assisted laser desorption/ionization (MALDI) source has been coupled to a tandem quadrupole/time-of-flight (QqTOF) mass spectrometer by means of a collisional damping interface. Mass resolving power of about 10,000 (FWHM) and accuracy in the range of 10 ppm are observed in both single-MS mode and MS/MS mode. Sub-femtomole sensitivity is obtained in single-MS mode, and a few femtomoles in MS/MS mode. Both peptide mass mapping and collision-induced dissociation (CID) analysis of tryptic peptides can be performed from the same MALDI target. Rapid spectral acquisition (a few seconds per spectrum) can be achieved in both modes, so high throughput protein identification is possible. Some information about fragmentation patterns was obtained from a study of the CID spectra of singly charged peptides from a tryptic digest of E. coli citrate synthase. Reasonably successful automatic sequence prediction (>90%) is possible from the CID spectra of singly charged peptides using the SCIEX Predict Sequence routine. Ion production at pressures near 1 Torr (rather than in vacuum) is found to give reduced metastable fragmentation, particularly for higher mass molecular ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

8.
This paper reports the use of an experimental matrix-assisted laser desorption/ionisation (MALDI) ion source fitted to a quadrupole time-of-flight (Q-Tof) mass spectrometer for the analysis of carbohydrates, particularly the N-linked glycans from glycoproteins. Earlier work on the Q-Tof instrument, using electrospray ionisation, gave excellent MS/MS spectra, particularly from the [M + Na]+ ions, but suffered from the major disadvantages that the signal was often split between singly and multiply charged ions and that sensitivity fell dramatically as the molecular weight of the carbohydrate rose. The MALDI ion source did not suffer from these problems and the instrument produced excellent MS and MS/MS spectra from small amounts of complex, underivatised glycans as well as those derivatised at the reducing terminus. Positive ion MS spectra of sialylated glycans recorded on the new instrument were much less complex than those recorded with a conventional MALDI-TOF instrument because of the absence of ions resulting from metastable (post-source decay, (PSD)) fragmentations occurring in the flight tube. However, considerable fragmentation by loss of sialic acid still occurred. MS/MS spectra of the [M + Na]+ ions from all compounds were almost identical to those recorded earlier with the electrospray-Q-Tof combination and far superior to MALDI-PSD spectra recorded with reflectron-TOF instruments. Spectra are shown for neutral and sialylated N-linked glycans from chicken ovalbumin, riboflavin binding protein, alpha1-acid glycoprotein, bovine fetuin and ribonuclease B, both as free glycans and as those derivatised at their reducing termini. The technique was applied to the structural determination of N-linked glycans from human secretory IgA and Apo-B 100 from human low-density lipoprotein.  相似文献   

9.
N-Linked oligosaccharide mixtures released from a number of standard glycoproteins were derivatised with 3-acetylamino-6-acetylaminoacridine (AA-Ac) using reductive amination. Analysis of these mixtures using an experimental matrix-assisted laser desorption/ionisation (MALDI) hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer provided detailed information about the mass distribution of the glycan derivatives. Collision-induced dissociation of the singly protonated [M + H](+) ions also gave rise to a number of product ions produced by the sequential cleavage of the glycosidic linkages. As fragmentation of the positively charged species occurred predominantly in one direction, i.e., from the non-reducing end of the glycan to the AA-Ac moiety, a considerable amount of information could be obtained with ease about the sequence in which the sugar residues were attached to one another. This derivatisation procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from proteins separated by gel electrophoresis.  相似文献   

10.
Matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) was applied to characterize permethylated oligosaccharides. Under these ionization conditions such derivatives yield intense signals corresponding to sodium-cationized molecular species. A systematic study was conducted on a series of neutral and sialylated permethylated oligosaccharides to allow rationalization of the fragmentation processes. The major fragments observed in the MALDI-TOF/TOF-MS/MS spectra result from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine and sialic acid residues. The fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Cross-ring cleavages, which are very informative of the linkages of the monosaccharide residues constituting these oligosaccharides, and 'internal' cleavage ions which are derived from elimination of substituents from around the pyranose ring, were also observed. This extensive fragmentation was shown to be useful for the structural characterization of oligosaccharides. MALDI-TOF/TOF-MS/MS of permethylated oligosaccharides appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

11.
Cereal varieties are normally identified using time-consuming methods such as visual examination of either the intact grain or one-dimensional electrophoretic patterns of the grain storage proteins. A fast method for identification of wheat (Triticum aestivum L.) varieties has previously been developed, which combines analysis of alcohol-soluble wheat proteins (gliadins) using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Here we have applied the same method for the identification of both barley (Hordeum vulgare L.) and rye (Secale cereale L.) varieties. For barley, 95% of the mass spectra were correctly classified. This is an encouraging result, since in earlier experiments only a grouping into subsets of varieties was possible. However, the method was not useful in the classification of rye, due to the strong similarity between mass spectra of different varieties.  相似文献   

12.
A tandem time-of-flight mass spectrometer for the study of photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization was designed and constructed. A reflectron with linear and quadratic (LPQ) potential components was used. Characteristics of the LPQ reflectron and its utility as the second stage analyzer of the tandem mass spectrometer were investigated. Performance of the instrument was tested by observing photodissociation of [M + H](+) from angiotensin II, a prototype polypeptide. Quality of the photodissociation tandem mass spectrum was almost comparable to that of the post-source decay spectrum. Monoisotopic selection of the parent ion was possible, which was achieved through the ion beam-laser beam synchronization. General theoretical considerations needed for a successful photodissociation of large biopolymer ions are also presented.  相似文献   

13.
A high-performance orthogonal time-of-flight (TOF) mass spectrometer was developed specifically for use in combination with a matrix-assisted laser desorption/ionization (MALDI) source. The MALDI source features an ionization region containing a buffer gas with variable pressure. The source is interfaced to the TOF section via a collisional focusing ion guide. The pressure in the source influences the rate of cooling and allows control of ion fragmentation. The instrument provides uniform resolution up to 18,000 FWHM (full width at half maximum). Mass accuracy routinely achieved with a single-point internal recalibration is below 2 ppm for protein digest samples. The instrument is also capable of recording spectra of samples containing compounds with a broad range of masses while using one set of experimental conditions and without compromising resolution or mass accuracy.  相似文献   

14.
N-Linked glycans were ionized from several matrices with a Shimadzu-Biotech AXIMA-QIT matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer. [M+Na]+ ions were produced from all matrices and were accompanied by varying amounts of in-source fragmentation products. The least fragmentation was produced by 2,5-dihydroxybenzoic acid and the most by alpha-cyano-4-hydroxycinnamic acid and 6-aza-2-thiothymine. Sialic acid loss was extensive but could be prevented by formation of methyl esters. Fragmentation produced typical low-energy-type spectra dominated by ions formed by glycosidic cleavages. MS(n) spectra (n = 3 and 4) were used to probe the pathways leading to the major diagnostic ions. Thus, for example, an ion that was formed by loss of the core GlcNAc residues and the 3-antenna was confirmed as being formed by a B/Y rather than a C/Z mechanism. The proposed structures of several cross-ring cleavage ions were confirmed and it was shown that MS3 spectra could be obtained from as little as 10 fmol of glycan.  相似文献   

15.
The use of plasma volume expanders, especially those based on chemically modified polysaccharides such as hydroxyethyl starch, has found its way from the medical field to the athletic community in the everlasting drive for performance enhancement. As such, plasma volume expanders have been placed on the list of banned substances by the International Olympic Committee, and in turn require accurate and sensitive analytical tools for their detection in complex biological matrices. Here we present a relatively straightforward method for the detection of polysaccharide-based plasma volume expanders (PVE) in urine, based on the carefully controlled partial acid hydrolysis of urine (20 microL) in a total volume of 500 microL 4 M trifluoroacetic acid. Following the incubation (30 min at 100 degrees C) an aliquot of the hydrolysate is dried, re-suspended in the analytical matrix (e.g. 2,5-dihydroxybenzoic acid) and examined by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The obtained mass spectrometric profile reveals a high number of characteristic peaks in the mass range between 500 and 3000 Da, a region that in urine samples devoid of PVE appears relatively clean, and thus allows the unambiguous identification of the presence of such PVE. This approach is fast (the mass profile can be obtained within 90 min), highly sensitive (the effective sample amount on the MALDI target is equivalent to 100 nL urine), needs little sample handling (four steps), requires no derivatisation and is devoid of interference from other biomolecules. The approach has been worked-out for hydroxy ethyl starch but can be applied to other polymer-derived plasma expanders such as dextran and probably the newly developed acetyl starch.  相似文献   

16.
Tryptic peptides were labeled with sulfonic acid groups at the N-termini using an improved chemistry. The derivatization was performed in common aqueous buffers on peptides adsorbed onto a ZipTip trade mark C(18), thus allowing simultaneous desalting/concentration of the sample. When only Arg-terminating peptides were considered, the procedure from adsorption onto the ZipTip until analysis by MALDI-PSD took about 10 min and several samples could be worked on in parallel. The resulting improved post-source decay (PSD) fragmentation produced spectra containing only y-ions. PSD amino acid sequencing of underivatized and derivatized synthetic peptides was compared. From the sequence information obtained from derivatized peptides isolated by ion selection from tryptic in-gel digests, a protein was correctly identified which was difficult to analyze from an unclear peptide mass fingerprint analysis. The method was also applied to the identification and localization of phosphorylated Ser and Tyr residues in native and synthetic peptides.  相似文献   

17.
Post-translational modifications (PTMs) of proteins are essential for proper function, as they regulate many aspects of a protein's activity and interaction with substrates. When analyzing modified peptides derived from such proteins by mass spectrometry, these modifications can dissociate, producing either a marker ion or neutral loss characteristic of the modification, which have conventionally been monitored with a precursor ion scan or neutral loss scan, respectively. Although powerful, both precursor ion scans and neutral loss scans can only screen for one particular modification at a time. This has led to the development of multiple neutral loss monitoring (MNM) for neutral losses and multiple precursor ion monitoring (MPM) for marker ions on electrospray instruments. Here, we report their implementation on a matrix-assisted laser desorption/ionization (MALDI) instrument as well as the inception of a novel scan strategy termed targeted multiple precursor ion monitoring (tMPM). This latter scan strategy has been developed on a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for the identification of multiple PTMs via their associated marker ions by manipulating certain components of the instrument, notably the timed ion selector and the delayed extraction source 2. Targeted MPM combined with a second approach, multiple neutral loss monitoring (MNM), is shown to be a successful approach in the identification of PTMs, identifying multiple modified peptides in a complex sample matrix.  相似文献   

18.
The atmospheric-pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI-QIT) analysis of tryptic peptides is reported following capillary liquid chromatographic (LC) separation and direct analysis of a protein digest. Peptide fragments were identified by peptide mass fingerprinting from mass spectrometric data and sequence analysis obtained by tandem mass spectrometry of the principal mass spectral peaks using a data-dependent scanning protocol. These data were compared with those from mass spectrometric analysis using capillary LC/MALDI-time-of-flight (TOF) and capillary LC/electrospray ionisation (ESI)-quadrupole TOF. For all three configurations the resulting data were searched against the MSDB database, using MASCOT and the sequence coverage compared for each technique. Complementary data were obtained using the three techniques.  相似文献   

19.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

20.
The spectra recorded by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) of complex carbohydrates from human milk are presented. Besides ions originating from glycosidic cleavages and from sugar ring fragmentations, these spectra show intense peaks that may be assigned to ions produced by three new fragmentation pathways involving a six-atom rearrangement. These ions, together with the A fragments from sugar ring fragmentations, open the possibility of obtaining a complete mapping of the linkage positions present in the carbohydrates investigated by MALDI-TOF/TOF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号