首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The authors of[1]discussed the subharmonic resonance bifurcation theory ofnonlinear Mathieu equation and obtained six bifurcation diagrams in(α,β)-plane.Inthis paper.we extended the results of[1]and pointed out that there may exist as many asfourteen bifurcation diagrams which are not topologically equivalent to each other.  相似文献   

2.
The topological bifurcation diagrams and the coefficients of bifurcation equation were obtained by C-L method. According to obtained bifurcation diagrams and combining control theory, the method of robust control of periodic bifurcation was presented, which differs from generic methods of bifurcation control. It can make the existing motion pattern into the goal motion pattern. Because the method does not make strict requirement about parametric values of the controller, it is convenient to design and make it. Numerical simulations verify validity of the method.  相似文献   

3.
This paper presents the large deflection elastic curve of buckled bars throughperturbation method,and the bifurcation diagrams including the influence of theimperfection at the base by using singular perturbation method of imperfect bifurcationtheory.The physical meaning of the bifurcation diagrams is discussed.  相似文献   

4.
In this paper, the general mathematical principle is over-all explained and a new general technique is presented in order to calculate uniformly asymptotic expansions of solutions of the perturbed bifurcation problem (1.6) in the vicinity of y=0, λ=0,δ=0, by means of singular perturbation method. Simultaneously, Newton’s polygon[4] is generalized. Finally, the calculating results of two examples are given.  相似文献   

5.
By basic equations, two basic theories are presented: 1. Theory of stock’s value v*(t)=v*(0) exp (ar2*t);2. Theory of conservation of stock’s energy. Let stock’s energy Φbe defined as a quadratic function of stock’s price v and its derivative v, Φ=Av2+Bv+Cv2+Dv, under the constraint of basic equation, the problem was reduced to a problem of constrained optimization along optimal path. Using Lagrange multiplier and Euler equation of variation method, it can be proved that Φkeeps conservation for any v,v. The application of these equations and theories on judgement and analysis of tendency of stock market are given, and the judgement is checked to be correct by the recorded tendency of Shenzhen and Shanghai stock markets.  相似文献   

6.
At present, the finite element method is an efficient method for analyzing structural dynamic problems. When the physical quantities such as displacements and stresses are resolved in the spectra and the dynamic matrices are obtained in spectral resolving form, the relative equations cannot be solved by the vibration mode resolving method as usual. For solving such problems, a general method is put forward in this paper. The excitations considered with respect to nonstationary processes are as follows: P(t)={Pi(t)},Pi(t)=ai(t)Pi(t), ai(t) is a time function already known. We make Fourier transformation for the discretized equations obtained by finite element method, and by utilizing the behaviour of orthogonal increment of spectral quantities in random process[1], some formulas of relations about the spectra of excitation and response are derived. The cross power spectral denisty matrices of responses can be found by these formulas, then the structrual safety analysis can be made. When ai(t)=l (i= 1,2,…n), the. method stated in this paper will be reduced to that which is used in the special case of stationary process.  相似文献   

7.
Bifurcation properties of a Duffing-van der Pol system with two parameters under multi-frequency excitations are studied. Three cases are discussed: (1) λ 1 is considered as bifurcation parameter, (2) λ 2 is considered as bifurcation parameter, and (3) λ 1 and λ 2 are both considered as bifurcation parameters. According to the definition of transition sets, the whole parametric space is divided into several different persistent regions by the transition sets for different cases. The bifurcation diagrams in different persistent regions are obtained, which provides a theoretical basis for optimal design of the system.  相似文献   

8.
Detailed structure of the attracting set of the piecewise linear Henon mapping(x, y)→(1- a|x|+by,x)with a=8/5 and b=9/25 is described in this paper using the method of dual line mapping. Let A and B denote the fixed saddles in the first quadrant, and in the third quadrant, respectively. It is claimed that(1)the attracting set is the closure of the unstable manifold of saddle B, which includes the unstable manifold of A as its subset, and(2)the basin of attraction is the closure of the stable manifold of A, bounded by the stable manifold of B, which is in the limiting set of the stable manifold of A.Relations of the manifolds of the periodic saddles with the manifolds of the fixed point are given. Symbolic dynamics notations are adopted which renders possible the study of the dynamical behavior of every piece of the manifolds and of every homoclinic or heteroclinic point.  相似文献   

9.
The global bifurcation and chaos are investigated in this paper for a van der Pol-Duff-ing-Mathieu system with a single-well potential oscillator by means of nonlinear dynamics. The au-tonomous system corresponding to the system under discussion is analytically studied to draw all globalbifureation diagrams in every parameter space, These diagrams are called basic bifurcation ones. Thenfixing parameter in every space and taking the parametrically excited amplitude as a bifurcation param-eter, we can observe how to evolve from a basic bifurcation diagram to a chaos pattern in terms of nu-merical methods. The results are sufficient to show that the system has distinct dynamic behavior, Fi-nally, the properties of the basins of attraction are observed and the appearance of fractal basin bound-aries heralding the onset of a loss of structural integrity is noted in order to consider how to control theextent and the rate of the erosion in the next paper.  相似文献   

10.
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bifurcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bifurcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.  相似文献   

11.
Conclusions We have investigated solutions of equation (3) when 2 is an eigenvalue of the linearized operator (13) and when it is not. In Section 4 we have shown that for 0 and 2 = i 2 we have exactly two nontrivial solutions which bifurcate to the right of i 2 ; these solutions are shown to exist in an interval ( i 2 , i 2 + 0). The method of Section 3 may then be used to extend these two solutions to the right of i 2 + 0 providing that 2= i 2 + 0 is not an eigenvalue of the linear operator (13) evaluated at = ± 1. Either a solution can be uniquely extended, or there exists a value of 2where the bifurcation method must be applied again3.While the method used here gives the exact number of solutions bifurcating from i 2 , other problems remain open; for example, it is still not proven that the two bifurcating branches have i zeros, as is the case for Hammerstein operators with oscillation kernels [4]. The conjecture of Odeh and Tadjbakhsh that there are exactly 2(i+1) nontrivial solutions in the interval i 2 < i +1/2 remains un-answered, although it would be proven if one could show that there is no secondary bifurcation as in the cases of Kolodner [7] and Coffman [8].  相似文献   

12.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

13.
Development characteristics of dilute cationic surfactant solution flow have been studied through the measurements of the time characteristics of surfactant solution by birefringence experiments and of the streamwise mean velocity profiles of surfactant solution duct flow by a laser Doppler velocimetry system. For both experiments, the concentration of cationic surfactant (oleylbishydroxymethylethylammonium chloride: Ethoquad O/12) was kept constant at 1000 ppm and the molar ratio of the counter ion of sodium salicylate to the surfactants was at 1.5. From the birefringence experiments, dilute surfactant solution shows very long retardation time corresponding to micellar shear induced structure formation. This causes very slow flow development of surfactant solution in a duct. Even at the end of the test section with the distance of 112 times of hydraulic diameter form the inlet, the flow is not fully developed but still has the developing boundary layer characteristics on the duct wall. From the time characteristics and the boundary layer development, it is concluded that the entry length of 1000 to 2000 times hydraulic diameter is required for fully developed surfactant solution flow.List of abbreviations and symbols A1, A2 Coefficients for time constant fitting [-] - B Breadth of the test duct [m] - C1, C2 Coefficients for time constant fitting [-] - D Pipe diameter [m] - DH Hydraulic diameter [m] - g Impulse response function [Pa] - H Width of the test duct [m] - n Index of Bird-Carreau model [-] - Re Reynolds number (=UmDH/) - ReD Pipe Reynolds number (=UmD/) - Rex Streamwise distance Reynolds number (=U0x/) - T Absolute temperature [K] - t Time [s] - ta Retardation time [s] - tb Build-up time [s] - tx Relaxation time [s] - tx1, tx2 Relaxation time for double time constant fitting [s] - t Time constant in Bird-Carreau model [s] - U Time mean velocity [m/s] - Um Bulk mean velocity [m/s] - Umax Maximum velocity in a pipe [m/s] - U0 Main flow velocity [m/s] - u Friction velocity [m/s] - x, y Coordinates [m] - Shear rate [s–1] - Mean shear rate [s–1] - n Birefringence [-] - 99% boundary layer thickness [m] - Solution viscosity [Pa·s] - P, S Surfactant and solvent viscosity [Pa·s] - 0, Zero and infinite viscosity of Bird-Carreau model [Pa·s] - Characteristic time in Maxwell model [s] - Water kinematic viscosity [m2/s] - Density [kg/m3] - Solution shear stress [Pa] - P, S Surfactant and solvent shear stress [Pa] - Time in convolution [s]  相似文献   

14.
By employing the four shafts balance concept paper [1] has reported a balance regime for the second order reciprocal inertia forces on the V-type eight cylinder internal combustion engines with a plane crankshaft. Thereafter, paper [2] has acquired a two-shafts balance regime, but through a rather tedious roudabout degenerating manipulation. The present article has, but starting out directly from the two-shafts balance concept, successfully acquired the same results as those in paper [2]. In addition, we propose, herein, a third balance system which might be, in general, called the slipper balance regime.  相似文献   

15.
An analytical solution is obtained for the stationary temperature profile in a polymeric melt flowing into a cold cavity, which also takes into account viscous heating effects. The solution is valid for the injection stage of the molding process. Although the analytical solution is only possible after making several (at first sight) rather stringent assumptions, the calculated temperature field turns out to give a fair agreement with a numerical, more realistic approach. Approximate functions were derived for both the dissipation-independent and the dissipation-dependent parts which greatly facilitate the temperature calculations. In particular, a closed-form expression is derived for the position where the maximum temperature occurs and for the thickness of the solidified layer.The expression for the temperature field is a special case of the solution of the diffusion equation with variable coefficients and a source term.Nomenclature a thermal diffusivity [m2/s] - c specific heat [J/kg K] - D channel half-height [m] - L channel length [m] - m 1/ - P pressure [Pa] - T temperature [°C] - T W wall temperature [°C] - T i injection temperature [°C] - T A Br independent part of T - T B Br dependent part of T - T core asymptotic temperature - v z() axial velocity [m/s] - W channel width [m] - x cross-channel direction [m] - z axial coordinate [m] - (x) gamma function - (a, x) incomplete gamma function - M(a, b, x) Kummer function - small parameter - () temperature function - thermal conductivity [W/mK] - viscosity [Pa · s] - 0 consistency index - power-law exponent - density [kg/m] - similarity variable Dimensionless variables Br Brinkman number - Gz Graetz number -   相似文献   

16.
Zusammenfassung Es werden Geschwindigkeitsverteilungen und Filmdickenabnahmen von nichtisothermen NEWTONschen und nicht-NEWTONschen (Potenzansatz) Rieselfilmen mit temperaturanhÄngiger ViskositÄt berechnet, wobei die Temperaturverteilung im Film als linear vorausgesetzt wird. An dicken Rieselfilmen mit Re=10–4... 10–2 sind Geschwindigkeitsprofile, Filmdicken und OberflÄchentemperaturen gemessen und daraus die thermische EinlauflÄnge bestimmt worden. Ausgehend von der Penetrationstheorie für eine endlich dicke Platte kann man für diese EinlauflÄnge eine Approximationsformel erhalten, die für Strömungen mit Re < 1000 verwendet werden kann.
Non-isothermal filmflow of a highly viscous liquid, the viscosity strongly depending on temperature
Velocity distributions and film thicknesses of nonisothermal NEWTONIAN and non-NEWTONIAN (power-law) falling films are computed assuming that the temperature across the film varies linearly. Experimental studies on thick falling films of Re=10–4...10–2 had been carried out to measure velocities, film thickness and surface temperature and to calculate the thermal entrance length. One can get for this entrance length a approximation formula which is valid for flows with RePr <1000 by applying the results for the thermal penetration into a material finite plate.

Bezeichnungen B dimensionsloser Temperaturkoeffizient - ¯B [K] Temperaturkoeffizient (ln)/(1/T) - cp [J/kgK] spezif. WÄrme bei konst. Druck - Fo FOURIER-Zahl - g [m/s2] Erdbeschleunigung - H dimensionslose Filmdicke - h [m] Filmdicke - m [Pas2–n] ViskositÄtskoeffizient im Potenzansatz von OSTWALD-DE WAELE - Nu NUSSELT-Zahl - n Flüssigkeitsexponent im Potenzansatz von OSTWALD-DE WAELE - Pr PRANDTL-Zahl (Gl.3.5) - q [W/m2] WÄrmestromdichte - Re REYNOLDS-Zahl (Gl.3.4) - T [K] Temperatur - t [s] Zeit - U dimensionslose Geschwindigkeit (X-Komponente) - u [m/s] Geschwindigkeitskomponente in x-Richtung - X dimensionslose Koordinate (X=x/h0) - x [m] LÄnge, Koordinate - Y dimensionslose Koordinate (Y=y/h0) - y [m] Höhe, Koordinate - [W/m2K] WÄrmeübergangskoeffizient - Plattenneigungswinkel gegen Horizontale - [s–1] Schergeschwindigkeit - dimensionslose Temperatur (Gl.3.3) - [m2/s] TemperaturleitfÄhigkeit (Gl.3.3) - [W/mK] WÄrmeleitfÄhigkeit - [Pas] ViskositÄt - [kg/m3] spezif. Dichte - [Pa] Schubspannung Indizes a scheinbar (apparent) - 0 bei x=0, auch: isotherm - P auf die Penetrationszeit bezogen - s an der OberflÄche - T bei linearer Temperaturdifferenz T - w an der Wand - 99 auf =0,99 bezogen - gemittelt, Mittelwert - thermisch ausgebildet, bei x - proportional - ¯t ungefÄhr - kleiner oder gleich ungefÄhr  相似文献   

17.
A stress-symmetrized internal viscosity (I.V.) model for flexible polymer chains, proposed by Bazua and Williams, is scrutinized for its theoretical predictions of complex viscosity * () = – i and non-Newtonian viscosity (), where is frequency and is shear stress. Parameters varied are the number of submolecules,N (i.e., molecular weightM = NM s ); the hydrodynamic interaction,h *; and/f, where andf are the I.V. and friction coefficients of the submolecule. Detailed examination is made of the eigenvalues p (N, h *) and how they can be estimated by various approximations, and property predictions are made for these approximations.Comparisons are made with data from our preceding companion paper, representing intrinsic properties [], [], [] in very viscous theta solutions, so that theoretical foundations of the model are fulfilled. It is found that [ ()] data can be predicted well, but that [ ()] data cannot be matched at high. The latter deficiency is attributed in part to unrealistic predictions of coil deformation in shear.  相似文献   

18.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

19.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

20.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号