首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mercury indium telluride (MIT) ingot was grown by the vertical Bridgman method. The defects in MIT crystals were characterized by the chemical etching method. A defect etchant for MIT crystals was developed. The etch pits of dislocations, microcracks and boundary was observed by scanning electron microscopy. It was elucidated that the etch pits density of dislocations of MIT wafers was about 4×105 cm−2. Te and In reduced at the grain boundaries, but were homogeneously distributed within the grains in the as-grown MIT crystals. The distribution of In in MIT crystals along the growth direction and radial direction was analyzed by electronic probe microscopy. It was found that In concentration was higher in the initial part and lower in the final part of the MIT ingot, which indicated that the segregation coefficient of In in MIT crystals was 1.15. The radial In concentration increased from the center to edge of the wafers and homogeneous in the middle part.  相似文献   

2.
Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B2O3) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm−1 in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B2O3 liquid was about 1016 cm−3 and was almost the same as that in a Ge crystal grown without B2O3. Oxygen concentration in a Ge crystal was enhanced to be greater than 1017 cm−3 by growing a crystal from a melt fully covered with B2O3; with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5×1017 cm−3. The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.  相似文献   

3.
In order to clarify containerless solidification mechanism of falling semiconductor microdroplets, the monosized droplets of germanium in the size range from 200 to 500 μm were ejected by pulsated orifice ejection apparatus method. The density of grains in the resultant particles was dramatically reduced by decreasing the ejection temperature, i.e. initial temperature. A surface observation and orientation imaging microscopy analysis proposed that such microstructural transition was derived from the dependency of preferred growth direction on the undercooling level: the initial temperature determined the solidification undercooling. Numerical calculation with the classical nucleation theory was performed to discuss this phenomenon, but could not sufficiently elucidate the effect of initial temperature obtained experimentally.  相似文献   

4.
LuAG:Ce single crystals with various activator concentrations were grown by the vertical Bridgman technique. Characterization of crystals was done in terms of actual doping level, macroscopic defects and degree of non-equivalent substitutions by Lu for Al in octahedral lattice sites. Scintillation measurements were performed using 2×2×8 mm3 shaped samples with Ce concentration in the range 0.05–0.55 at%. Essential improvement of performance was demonstrated in samples containing ≥0.2 at% of Ce; the light yield measured in LuAG:Ce (0.55 at%) was about 26000 ph/MeV, or close to that of LSO.  相似文献   

5.
High-purity semi-insulating CdTe crystals have been successfully grown by encapsulated (B2O3) Bridgman technique. The procedure strongly limits component losses allowing the achievement of stoichiometry control material and keeps a low level of impurity contamination as shown by mass spectroscopy analysis data. When strictly stoichiometry-controlled and high-purity polycrystalline source material has been used, high-resistivity crystals have been obtained without any intentional doping. EPD values in the range of 1–3×104 cm−2 have been observed in a wide region of the crystals. Luminescence spectroscopy confirms the purity and good structural quality of the material. The proposed method avoids the technical problems posed by the High Pressure Bridgman technique and fits the requirements for CdTe/CdZnTe crystals large-scale production.  相似文献   

6.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

7.
The organic material 4-nitrobenzaldehyde single crystal has been grown using the single wall ampoule with nano-translation by modified vertical Bridgman technique. The grown crystal was confirmed by single and powder X-ray diffraction (XRD). Fourier transform infrared (FTIR) analysis was used to identify the functional groups present in the grown crystal. The optical property of the grown crystal was analyzed by UV–vis–NIR and photoluminescence (PL) spectral measurements. The thermal characteristics of the grown crystal were analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). The dielectric measurements were carried out with four different frequencies and the results indicate an increase in dielectric and conductivity parameters with the increase of temperature at all frequencies. The microhardness measurements were used to analyze the mechanical property of the grown crystal.  相似文献   

8.
9.
We investigated defect-selective wet chemical etching of freestanding aluminum nitride (AlN) single crystals and polished cuts in a molten NaOH–KOH eutectic at temperatures ranging from 240 to 400 °C. Due to the strong anisotropy of the AlN wurtzite structure, different AlN faces get etched at very different etching rates. On as-grown rhombohedral and prismatic facets, defect-related etching features could not be traced, as etching these facets was found to mainly emphasize features present already on the un-etched surface. On nitrogen polar basal planes, hexagonal pyramids/hillocks exceeding 100 μm in diameter may form within seconds of etching at 240 °C. They sometimes are arranged in lines and clusters, thus we attribute them to defects on the surface, presumably originating in the bulk material. On aluminum polar basal planes, the etch pit density which saturates after approx. 2–3 min of total etching time at 350 °C equals the density of a certain type of dislocations (presumably screw dislocations) threading the surface. Smaller etch pits form around annealed indentations, in the vicinity of some bigger etch pits after repeated etching, and sometimes also isolated on the surface area. Although alternate explanations exist, we attribute these etch pits to threading mixed and edge dislocations. This paper features etching parameters optimized for different planes and models on the formation of etching features especially on the polar faces. Finally, the issue of reliability and reproducibility of defect detection and evaluation by wet chemical etching is addressed.  相似文献   

10.
Assessing the fundamental limits of the charge carrier mobilities in organic semiconductors is important for the development of organic electronics. Although devices such as organic field effect transistors (OFETs), organic thin film transistors (OTFTs) and organic light emitting diodes (OLEDs) are already used in commercial applications, a complete understanding of the ultimate limitations of performance and stability in these devices is still lacking at this time. Crucial to the determination of electronic properties in organic semiconductors is the ability to grow ultra-pure, fully ordered molecular crystals for measurements of intrinsic charge transport. Likewise, sensitive tools are needed to evaluate crystalline quality. We present a high-resolution X-ray diffraction and X-ray topography analysis of single-crystals of rubrene that are of the quality being reported to show mobilities as high as amorphous silicon. We show that dislocations and grain boundaries, which may limit charge transfer, are prominent in these crystals.  相似文献   

11.
We explored some unique defects in a batch of cadmium zinc telluride (CdZnTe) crystals, along with dislocations and Te-rich decorated features, revealed by chemical etching. We extensively investigated these distinctive imperfections in the crystals to identify their origin, dimensions, and distribution in the bulk material. We estimated that these features ranged from 50 to 500 μm in diameter, and their depth was about ∼300 μm. The density of these features ranged between 2×102 and 1×103 per cm3. We elaborated a model of them and projected their effect on charge collection and spectral response. In addition, we fabricated detectors with these defective crystals and acquired fine details of charge-transport phenomena over the detectors’ volume using a high-spatial resolution (25 μm) X-ray response mapping technique. We related the results to better understand the defects and their influence on the charge-transport properties of the devices. The role of the defects was identified by correlating their signatures with the findings from our theoretical model and our experimental data.  相似文献   

12.
It is demonstrated that the NEXAFS spectra are a “fingerprint” of the symmetry and the composition of the binary nitrides GaN, AlN and InN, as well as of their ternary alloys In0.16Ga0.84N and AlyGa1−yN. From the angular dependence of the N-K-edge NEXAFS spectra, the hexagonal symmetry of the under study compounds is deduced and the (px, py) or pz character of the final state is identified. The energy position of the absorption edge (Eabs) of the binary compounds GaN, AlN and InN is found to red-shift linearly with the atomic number of the cation. The Eabs of the AlyGa1−yN alloys takes values in between those corresponding to the parent compounds AlN and GaN. Contrary to that, the Eabs of In0.16Ga0.84N is red-shifted relative to that of GaN and InN, probably due to ordering and/or phase separation phenomena. The EXAFS analysis results reveal that the first nearest-neighbour shell around the N atom, which consists of Ga atoms, is distorted in both GaN and AlxGa1−xN for x<0.5.  相似文献   

13.
We report (1 1 1), (1 1 0) and (1 0 0) growth of CaF2 by the vertical Bridgman method. Crystals up to 250 mm diameter were grown and various growth parameters such as growth rate, temperature gradient and post-growth cooling rate were studied. It was found that the growth rate and the cooling rate are slower for the larger diameter crystals with a fixed temperature gradient. These growth parameters were optimized for growing the crystals along specific orientation after realizing that CaF2 has a tendency to grow along an orientation close to 1 1 0. Degradation in optical transmittance was evaluated by irradiating the crystal to γ-rays up to a dose of 105 rad. Optimized scavenger addition resulted in crystals with better radiation resistance and excellent VUV transmittance.  相似文献   

14.
We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples in spite of the low growth temperature, suggesting that oxygen impurities promote the formation of vacancies also through other mechanisms than a mere reduction of thermodynamical formation enthalpy. On the other hand, no positron trapping at vacancy defects is observed in Mg-doped p-type samples, as expected when the Fermi level is close to the valence band and intrinsic defects are dominantly positively charged. Annealing of the samples at temperatures well above the growth temperature is found to change significantly the defect structure of the material.  相似文献   

15.
The zinc oxide thin films were deposited by the sol–gel method on the glass microscope slide substrates. The microstructure of films was determined as a function of film thickness as well as annealing temperature using X-ray line broadening technique and applying whole powder pattern modeling (WPPM). This investigation showed that the film thickness has no significant effect on the grain size, whereas the dislocation density decreases with the film thickness. On the other hand with the rise of annealing temperature the dislocation density decreases, but the crystallite size becomes larger.  相似文献   

16.
17.
Indium-doped Cd1−xZnxTe (CZT:In) single crystals were annealed by a two-step method, including a high-temperature step and a low-temperature step in sequence. IR transmittance spectrum, IV curve and PL spectrum were used to characterize the CZT single crystals. After annealing, the opto-electrical properties of the CZT:In crystals were improved obviously. The average IR transmittance was remarkably increased by about 23%, and the resistivity was enhanced by as high as four orders of magnitude. In the PL spectra, the intensity of the (D0, X) peak prominently increased, and the full-width-at-half-maximum was reduced. Meanwhile, the intensity of the DAP peak decreased greatly, and the structure became practically indistinguishable from the background. Moreover, the intensity of the Dcomplex peak also decreased. The investigation shows that these improvements in the physical properties after annealing are due to variations in the micro-structures. The two-step annealing method can eliminate precipitates/inclusions, remove impurities, compensate Cd vacancies, decrease dislocations and reduce internal stress.  相似文献   

18.
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 μm. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers.  相似文献   

19.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

20.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号