首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passively Q-switched yellow output from a frequency-doubled self-stimulating Raman composite Nd:YVO4/YVO4 laser using a Cr:YAG saturable absorber is reported. Maximum yellow output power of 264 mW was obtained with corresponding diode to yellow conversion efficiency of 5.9%.  相似文献   

2.
We report on a passively Q-switched diode-pumped Nd:YVO4 laser polarized along the a axis (corresponding to the smallest value of emission cross section at 1064 nm), generating 157-μJ pulses with 6.0-ns time duration (>20 kW peak power) and 3.6 W of average power at 1064 nm with good beam quality (M2<1.4). The selection of the polarization was performed by a novel technique relying on the birefringence of the laser crystal and on the misalignment sensitivity of the resonator. Received: 30 September 2002 / Revised version: 22 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +39-382/422583, E-mail: agnesi@ele.unipv.it  相似文献   

3.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

4.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

5.
Intra-cavity sum frequency generation (SFG) of c-cut Nd:YVO4 self-Raman laser was investigated for the first time. A 4 × 4 × 10 mm3 KTP crystal with a type-II phase-matching cutting angle (θ = 83.4°, φ = 0°) was used for SFG between the fundamental light at 1066 nm and first-Stokes light at 1178 nm. The laser system with different curvature radii of output couplers and different pulse repetition frequencies were investigated. At a pump power of 14 W and pulse repetition frequency of 20 kHz, the average output power of yellow-green laser at 560 nm up to 840 mW was achieved, corresponding to a slope efficiency of 7.6% and a conversion efficiency of 6% with respect to diode pump power.  相似文献   

6.
Y. Wang  M. Gong  L. Huang 《Laser Physics》2010,20(6):1316-1319
High pulse amplitude stability of 0.62% (rms) is achieved at 60 kHz repetition rate in fundamental mode with double-end continuous-grown YVO4/Nd:YVO4/YVO4 composite crystal. The average output power and pulse peak power are 32.9 W and 27.7 kW, respectively, with 19.8 ns pulse width and 548 μJ pulse energy. The pulse amplitude stability is investigated experimentally. The stability gets improved with the decrease of repetition rate and output transmission. From theoretical analysis, the reason of pulse instability at high repetition rates is that the initial population inversion doesn’t saturate and the final population inversion doesn’t approach zero. With the decrease of repetition rate and output transmission, the final population inversion decreases and the interaction between two adjacent pulse periods is weakened. Therefore, pulse stability improves.  相似文献   

7.
We present the concept and practical realization of a single frequency, tuneable diode pumped Nd:YVO4/YVO4/KTP microchip laser operating at 532 nm. Theoretical analysis of the single mode operation of such a laser configuration is presented. The single frequency operation has been obtained in a birefringent filter, where an YVO4 beam displacer acts as an ideal polarizer. Experimental results are in good agreement with theoretical analysis. We have obtained stable single frequency operation, tuneable over 0.6 nm in the spectral range around 1064 nm. The laser operated with output power up to 110 mW at 53 nm. The total optical efficiency (808 nm to 532 nm) was 14%.  相似文献   

8.
A passively Q-switched a-cut Nd:YVO4 self-stimulating Raman laser using a Cr:YAG saturable absorber has been demonstrated for the first time. The maximum average output power of the self-Raman laser at 1176 nm is 347 mW at the incident pump power of 10 W with a pulse repetition frequency (PRF) of 66 kHz. The pulse width, pulse energy of the 1176 nm are found to be 10 ns and 5.6 μJ. The conversion efficiency from diode laser input power to Raman output power is 3.47%.  相似文献   

9.
A compact diode-pumped doubly Q-switched extracavity frequency-doubled Nd:YVO4/KTP green-pulse laser was demonstrated, using both an acoustic-optic (AO) modulator and a GaAs saturable absorber in a simple flat-flat cavity. The green laser can generate a more symmetric and shorter pulse when compared with purely AO and passively Q-switched lasers. A peak power of 7.54 kW with the corresponding pulse width of 3.2 ns has been achieved with the incident pump power of 7.76 W and f p = 15 kHz. A reasonable analysis about the experimental results has been given.  相似文献   

10.
Ultrahigh-efficiency TEM00 operation is demonstrated in a diode-pumped Nd:YVO4 laser in a bounce amplifier geometry using a specially designed astigmatically optimised cavity configuration. Optical efficiency >68% is demonstrated and up to 27.1 W of output power for multimode operation. For single-mode TEM00 operation, an output power of 23.1 W for 39.5 W of diode pumping was produced with beam propagation parameters of Mx 2=1.3 and My 2=1.1. Received: 10 October 2002 / Revised version: 9 December 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +44-20/7594-7744, E-mail: a.minassian@ic.ac.uk  相似文献   

11.
A high-repetition-rate eye-safe optical parametric oscillator (OPO), using a non-critically phase-matched KTP crystal intracavity pumped by an acousto-optically (AO) Q-switchedNd:YVO4 laser, is experimentally demonstrated. It is found that the average OPO signal power at 1573 nm can be efficiently increased by increasing the pulse repetition rate. Moreover, the intracavity OPO process effectively shortens the pulse width so that it is in the range 5∼8 ns for pulse repetition rates of 10 to 80 kHz. As a result of the relatively short pulse, the peak power at 1573 nm is higher than 2 kW at a pulse repetition rate of 80 kHz. Received: 10 July 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +886-35/729-134, E-mail: yfchen@cc.nctu.edu.tw  相似文献   

12.
We report a high-repetition-rate, high-peak-power laser diode (LD) pumped burst-mode 1064 nm laser from a Nd:YVO4/Nd:YAG master oscillator power amplifier. 10–100 kHz pulse burst in a duration up to 2 ms is achieved in LD end-pumped Nd:YVO4 acousto-optically Q-switched laser. After amplification with LD side-pumped Nd:YAG rod amplifiers, the single pulse energy reaches 73 mJ in 10 kHz pulse burst laser with a peak power of 7.8 MW.  相似文献   

13.
The analysis of compact CW diode-side-pumped grazing-incidence-geometry Nd:YVO4 laser designs is presented. An output power of 5 W (λ=1064 nm) was produced at 17 W of diode pump (conversion efficiency of 30%) in single transverse TEM00 mode operation at high laser beam quality (Mx 2≈1.05 and My 2≈1.01). The resonator geometry was analyzed by applying generalized 4×4 matrix modeling of the spatial mode size, including the impact on the laser operation of cavity astigmatism and a thermal lens in the laser slab. The simplicity and compactness of the laser cavities allow their use for technological applications. Received: 31 July 2002 / Published online: 22 January 2003 RID="*" ID="*"Corresponding author. Fax: +44-20/7594-7744, E-mail: m.damzen@ic.ac.uk  相似文献   

14.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

15.
A continuous wave (CW), extra-cavity singly resonant optical parametric oscillator (SRO) has been demonstrated. The SRO is based on 5% magnesium-oxide doped periodically-poled lithium niobate (MgO:PPLN) pumped by a CW Nd:YVO4/YVO4 ring laser centered at 1064.4 nm. The nonlinear crystal temperature is kept at 120.0 ± 0.1°C and a domain period of 30 μm is used in this experiment. When the pump power is 11 W, an output power of 2.0 W at the idler wavelength of 3.479 μm has been obtained from the OPO. The optical-optical conversion efficiency is about 18.2%, and the slope efficiency is about 20.8%.  相似文献   

16.
X. Wushouer  H. Yu  M. Gong  P. Yan 《Laser Physics》2008,18(11):1319-1322
We report on the LD-pumped passively mode-locked solid-state laser with SESAM (semiconductor saturable absorber mirror), in which the output beam is single passed through a flat mirror. The CW mode-locking pulse at 1064 nm, with an output power of 5 W, a pulse repetition rate of 98 MHz, and a pulse width of 25.3 ps. The beam quality is M 2 < 1.12 and the optical-optical efficiency is 35.7%.  相似文献   

17.
Continuous-wave operation of a diode-pumped Nd:YVO4 laser with self-frequency Raman conversion is demonstrated. The threshold of Raman generation was measured to be 1.3 W of laser diode power. The maximum output power of Stokes radiation at the wavelength of 1177 nm was up to 50 mW at a laser diode pump power of 2.3 W, corresponding to the slope efficiency of 5%. The beam quality M2 of the Stokes radiation was about 1.4. The fluctuations of the Stokes power were minimised down to 4%. PACS 42.55.Ye; 42.60.Pk; 42.65.Dr  相似文献   

18.
It is reported that efficient continuous-wave (CW) red laser generation at 693 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd:YVO4 laser. With incident pump power of 18.2 W, output power of 278 mW at 693 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 278 mW, the output stability is better than 2.9%.  相似文献   

19.
The laser performance of a composite crystal bonded with three Nd:YVO4 single crystals has been investigated for the first time as far as we know. The largest continuous wave output power of 2.68 W is obtained at the incident pump power of 6.2 W, giving an optical conversion efficiency of 43.1% and a slope efficiency of 45.9%. For passively Q-switched operation with Cr4+:YAG of 71% initial transmission, the shortest pulse width of 18.2 ns, the largest single-pulse energy of 19.9 μJ, and the highest peak power of 1.12 kW are achieved, with the pulse repetition rate being 44.9 kHz, at the incident pump power of 6.2 W. The composite crystal can generate more excellent laser performance, when compared with the single crystals.  相似文献   

20.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:YVO4 laser that generates simultaneous laser action at the wavelengths 914 and 1342 nm is demonstrated. A total dual-wavelength output power of 1.79 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 914 and 1342 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 212 mW at 544 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号