首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incompressibility and the single-particle potential of asymmetric nuclear matter have been investigated in the framework of the Skyrme interaction. These parameters have been studied as functions of the nuclear density, the neutron excess parameter, and the temperature. The ratio of the isothermal incompressibility of hot nuclear matter to the incompressibility of cold nuclear matter for different values of neutron excess as a function of temperature is calculated. It is observed that this ratio decreases with temperature increasing apart from pure neutron matter when the growth of temperature leads to the growth of incompressibility. The symmetry incompressibility has been calculated as a function of density for different values of temperature. The text was submitted by the authors in English.  相似文献   

2.
Vacuum renormalization corrections are calculated for normal nuclear matter and neutron star matter in the chiral-sigma model. The theory is generalized to include hyperons in equilibrium with nucleons and leptons. The equations of state corresponding to two compression moduli, a “stiff” and “soft” one for nuclear matter, are studied. It is shown that fully one half the mass of a neutron star at the limiting mass is composed of matter at less than twice nuclear density. Neutron star masses are therefore moderately sensitive to the properties of matter near saturation and to the domain of the hyperons, but dominated by neither. The predictions for the two equations of state are compared with observed neutron star masses, and only the stiffer is compatible.  相似文献   

3.
We discuss here a self-consistent method to calculate the properties of the cold asymmetric nuclear matter. The nuclear matter is dressed with s-wave pion pairs. The nucleon-nucleon (N-N) interaction is mediated by these pion pairs, ∞ and ρ mesons. The parameters of these interactions are calculated selfconsistently to obtain the saturation properties like equilibrium binding energy, pressure, compressibility and symmetry energy. The computed equation of state is then used in the Tolman-Oppenheimer-Volkoff (TOV) equation to study the mass and radius of a neutron star containing pure neutron matter.  相似文献   

4.
研究和详细地比较了RMF理论中不同的有效相互作用强度的密度依赖性, 并且讨论了这种密度依赖性对于核物质和中子星性质的影响. 对于核物质, 不同的参数组给出的对称核物质的饱和点非常接近, 基本都在经验值的范围内. 对于中子星, 考虑超子后不同参数组给出的质量极限的范围为1.52—2.06 M☉, 半径为10.24—11.38 km.The density dependencies of various effective interaction strengths in the relativistic mean field and their influences on the properties of nuclear matter and neutron stars are studied and carefully compared. The differences of saturation properties given by various effective interactions are subtle in symmetric nuclear matter. The Oppenheimer Volkoff mass limits of neutron stars calculated from different equations of state are 1.52—2.06 M☉, and the radii are 10.24—11.38 km with hyperons included.  相似文献   

5.
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in theframework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon E A (δ) calculatedin the full range of spin polarization δ = (ρ↑ - ρ↓)/ρ for symmetric nuclear matter and pure neutron matter fulfills aparabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density alongwith the related quantities such as the magnetic susceptibility and the Landau parameter Go. The main effect of thethree-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value withonly two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurationsstudied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.  相似文献   

6.
在扩展的同位旋相关的Brueckner—Hartree—Fock理论框架内,在整个同位旋自由度范围内研究了质量算子的空穴线展开中不同等级近似下非对称核物质中Hugenholtz—Van Hove定理的满足程度,并计算了中子和质子的费米能量.结果表明为了使Hugenholtz-Van Hove定理达到令人满意的满足程度,需要同时考虑质量算子中的重排贡献和重正修正,从而指出了基态关联对于非对称核物质中单粒子性质的重要性.  相似文献   

7.
There is growing evidence to suggest that the binding energy of nucleon in nuclear matter comes from a cancellation between large Lorentz scalar and vector potentials[1,2]. The relativistic approach has been of a great success in describing not only the ground state properties of stable nuclei, but also those of exotic nuclei. In the relativistic frame, the spin-orbit coupling can be deduced automatically, which is usually given by hand in the non-relativistic approach. The relativistic method…  相似文献   

8.
The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much imp...  相似文献   

9.
A modified microscopic model for calculating the total reaction cross section in the intermediate energy domain is given,the effects of neutron skin,ground state deformation and surface diffusion of the nuclear matter distribution is discussed quantitatively.The experimental data and the calculated results show that the surface diffusion of the nuclear matter distribution which was assumd to be dependent on the neutron excess is a important factor for the rapid increase of the total reaction cross section induced by neutron-rich nuclei.  相似文献   

10.
Density-dependent parametrization models of the nucleon-meson coupfing constants, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state (EOS) and the neutron star properties are studied in a relativistic Lagrangian density, using the relativistic mean field (RMF) hadron theory. It is known that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influences the stability of the neutron stars. We use density-dependent models of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the (~-field effects in asymmetric nuclear matter. Our calculation shows that the stability conditions of the neutron star matter can be improved in presence of the δ-meson in the density-dependent models of the coupling constants. The EOS of nuclear matter strongly depends on the density dependence of the interactions.  相似文献   

11.
The energy per particle BA in nuclear matter is calculated up to high baryon density in the whole isospin asymmetry range from symmetric matter to pure neutron matter.The results,obtained in the framework of the Brueckner-Hartree-Fock approximation with two-and three-body forces,confirm the well-known parabolic dependence on the asymmetry parameterβ=(N?Z)/A(β^2 law)that is valid in a wide density range.To investigate the extent to which this behavior can be traced back to the properties of the underlying interaction,aside from the mean field approximation,the spin-isospin decomposition of BA is performed.Theoretical indications suggest that theβ^2 law could be violated at higher densities as a consequence of the three-body forces.This raises the problem that the symmetry energy,calculated according to theβ^2 law as a difference between BA in pure neutron matter and symmetric nuclear matter,cannot be applied to neutron stars.One should return to the proper definition of the nuclear symmetry energy as a response of the nuclear system to small isospin imbalance from the Z=N nuclei and pure neutron matter.  相似文献   

12.
A model stress tensor for high-density matter based on a linearized relativistic quantum field theory is examined. The two coupling constants are fit to nuclear matter. Other properties of nuclear and neutron matter and neutron stars are then implied.  相似文献   

13.
Linear correlations are found among the isovector nuclear matter properties in both the Skyrme-Hartree-Fock (SHF) and the relativistic mean-field (RMF) models. In addition, we found a kind of correlation between the isovector nuclear matter properties and the incompressibility in the SHF model. The Skyrme parameters are related analytically to nuclear matter properties with the Thomas—Fermi approximation. By using a linear correlation between the neutron skin thickness and the pressure of the neutron matter in the SHF model, we show that the neutron skin thickness of 208Pb gives crucial information about not only the neutron equation of state but also the isovector nuclear matter properties and the parametrization of Skyrme interaction. The text was submitted by the authors in English.  相似文献   

14.
Thermal properties of symmetric nuclear matter and pure neutron matter are studied in a selfconsistent Green’s function and Brueckner–Hartree–Fock approaches with the inclusion of the contact interaction using CDBONN potential. Also we investigate the temperature dependence of the symmetry energy. The symmetry energy at fixed density is found to generally decrease with temperature. The temperature effects on the nuclear matter symmetry energy are found to be stronger at lower densities while become much weaker at higher densities. The results of several microscopic approaches are compared. Also the results are compared with recent experimental data. There is good agreement between the experimental symmetry energy and those calculated in the Brueckner–Hartree–Fock approach.  相似文献   

15.
Equations of state of cold neutron matter are calculated by the method of unitary transformations for a hard-core and a soft-core potential. Equilibrium configurations are constructed in the Newtonian and the general relativistic theory of gravitation. It is found that Newtonian treatment to a certain extent gives very good results. On the other hand neutron star models are strongly affected by the nuclear forces used in the equation of state.  相似文献   

16.
马中玉  荣健 《中国物理 C》2006,30(12):1230-1233
在Dirac Brueckner Hartree-Fock (DBHF)理论框架下研究了核子光学势和核子有效质量的同位旋相关性. 非对称核物质的计算采用了DBHF的核子自能的Dirac结构的新的分解方法, 核子自能的实部是用G矩阵在Hartree-Fock近似下计算得到, 而虚部从极化图得到. 用核子的薛定谔等价势可以得到核子矢量有效质量. 研究表明考虑了核势的能量相关性在丰中子核物质情况下核子矢量有效质量比质子的大.  相似文献   

17.
The nuclear symmetry energy is intimately connected with nuclear astrophysics. This contribution focuses on the estimation of the symmetry energy from experiment and how it is related to the structure of neutron stars. The most important connection is between the radii of neutron stars and the pressure of neutron star matter in the vicinity of the nuclear saturation density ns. This pressure is essentially controlled by the nuclear symmetry energy parameters Sv and L , the first two coefficients of a Taylor expansion of the symmetry energy around ns. We discuss constraints on these parameters that can be found from nuclear experiments. We demonstrate that these constraints are largely model-independent by deriving them qualitatively from a simple nuclear model. We also summarize how recent theoretical studies of pure neutron matter can reinforce these constraints. To date, several different astrophysical measurements of neutron star radii have been attempted. Attention is focused on photospheric radius expansion bursts and on thermal emissions from quiescent low-mass X-ray binaries. While none of these observations can, at the present time, determine individual neutron star radii to better than 20% accuracy, the body of observations can be used with Bayesian techniques to effectively constrain them to higher precision. These techniques invert the structure equations and obtain estimates of the pressure-density relation of neutron star matter, not only near ns, but up to the highest densities found in neutron star interiors. The estimates we derive for neutron star radii are in concordance with predictions from nuclear experiment and theory.  相似文献   

18.
The phase equilibrium of nuclear matter is studied thermodynamicallylat zero temperature. The equation of state obtained from the Thomas-Fermi model of Seyler-Blanchard shows that there are two kinds of states of the nuclear matter: gas and liquid. pure neutron matter is always in a gas phase.For the nuclear matter with two semi-infinite half spaces in contact at a plane boundary,the phase equilibrium is studied in three cases.Our calculation gives the neutron drip point δND=0.305 and the proton drip point δPD=0.678.The phase equilibrium is possible between two nuclear matter systems up to δC~0.89 where the system becomes homogeneous.  相似文献   

19.
We discuss how the nuclear superfluidity affects the thermalisation time of the inner crust of neutron star in the case of a rapid cooling process. The thermal response of the inner crust matter is calculated supposing two pairing scenarios: one corresponding to the BCS approximation and the other to many-body techniques including polarisation effects. It is shown that these two pairing scenarios, which reflect the present uncertainty in the pairing properties of infinite neutron matter, give very different values for the thermalisation time of the crust.  相似文献   

20.
左维  陆广成 《物理学报》2007,56(7):3873-3879
利用Brueckner-Hartree-Fock和BCS理论方法,计算了非对称核物质中处于1S0态的质子和中子的对关联能隙,着重研究和讨论了能隙的同位旋依赖性和三体核力的影响.结果表明:随核物质的同位旋非对称度增大,中子1S0态超流相存在的密度范围逐渐缩小而且对关联能隙峰值稍有升高;质子1S0态超流相存在的密度范围迅速扩大而且对关联能隙峰值显著降低.三体核力对非对称核物质中1S0态中子超流性及其同位旋依赖性的影响相对较小,但对1S0态质子超流性具有重要影响,而且其效应随核子数密度增大而迅速增强.三体核力的主要作用是强烈地抑制了具有高非对称度的核物质中高密度区域的1S0态质子超流性,导致质子超流相存在的密度范围显著缩小. 关键词: 同位旋非对称核物质 质子和中子超流性 三体核力 BCS理论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号