首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel photocatalytic material (Pt,Cd0.8Zn0.2S)/HLaNb2O7 was fabricated by successive intercalation and exchange reactions. The (Pt,Cd0.8Zn0.2S)/HLaNb2O7 possessed a gallery height less than 0.5 nm and showed a broad absorption with wavelength over 370-500 nm. Using (Pt,Cd0.8Zn0.2S)/HLaNb2O7 as catalyst, the photocatalytic H2 evolution was more than 160 cm3·h-1·g-1 in the presence of Na2S as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. Furthermore, the catalyst showed photocatalytic activity even under visible light irradiation.  相似文献   

2.
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was verfied by cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

3.
Nano-structured spinel Li2Mn4O9 powder was prepared via a combustion method with hydrated lithium acetate (LiAc·2H2O), manganese acetate (MnAc2·4H2O), and oxalic acid (C2H2O4·2H2O) as raw materials, followed by calcination of the precursor at 300 °C. The sample was characterized by X-ray diffraction, scanning electron microscope, and energy-dispersive X-ray spectroscopy techniques. Electrochemical performance of the nano-Li2Mn4O9 material was studied using cyclic voltammetry, ac impedance, and galvanostatic charge/discharge methods in 2 mol L−1 LiNO3 aqueous electrolyte. The results indicated that the nano-Li2Mn4O9 material exhibited excellent electrochemical performance in terms of specific capacity, cycle life, and charge/discharge stability, as evidenced by the charge/discharge results. For example, specific capacitance of the single Li2Mn4O9 electrode reached 407 F g−1 at the scan rates of 5 mV s−1. The capacitor, which is composed of activated carbon negative electrode and Li2Mn4O9 positive electrode, also exhibits an excellent cycling performance in potential range of 0–1.6 V and keeps over 98% of the maximum capacitance even after 4,000 cycles.  相似文献   

4.
Olivine-type LiFePO4 is a very promising polyanion-type cathode material for lithium-ion batteries. In this work, LiFePO4 with high specificity capacity is obtained from a novel precursor NH4FePO4·H2O via microwave processing. The grains grow up in the duration of sintering until they reach the decomposition temperature. The apparent conductivity of the samples rises rapidly with the irradiation time and influences the electrochemical performance of the material greatly at high current density. As a result, the LiFePO4 cathode material obtained with a sintering time of 15 min has good electrochemical performance. Between 2.5 and 4.2 V versus Li, a reversible capacity is as high as 156 mAh g−1 at 0.05 C.  相似文献   

5.
LiVPO4F/C composites with better electrochemical performance were prepared by calcination of LiF and amorphous vanadium phosphorus oxide (VPO) intermediate synthesized by a sol–gel method using H3PO4, V2O5 and citric acid as raw materials. The properties of LiVPO4F/C composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The analysis of XRD patterns and Fourier transform infrared spectra (FTIR) reveal that VPO intermediate prepared by sol–gel method is amorphous and VPO4 may exist in VPO intermediate. The compositions of LiVPO4F/C composites are related to the calcination temperature for preparation of amorphous VPO/C intermediate and LiVPO4F/C composite prepared by VPO/C synthesized at 700°C consists of a single crystal phase of LiVPO4F. The electrochemical tests show that LiVPO4F/C composite prepared by VPO/C synthesized at 700°C exhibits higher discharge capacity and excellent cycle performance. This LiVPO4F/C composite displays discharge capacity of 133 mAh g−1 at 0.5 C (78 mA g−1) and remains capacity retention of 96.8% after 30 cycles, even at a high rate of 5 C, the composite exhibits high discharge capacity of 115 mAh g−1 and capacity retention of 97% after 100 cycles.  相似文献   

6.
Li0.97Er0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Er3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methodes. The electrochemical tests show Li0.97Er0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh g−1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh g−1 at 2C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2C.  相似文献   

7.
The electrochemical oxidation of dilute aqueous solutions of pentachlorophenol (PCP) using Ti/SnO2 as an electrocatalytic material has been investigated. The studies were carried out in a two-compartment electrochemical cell at three different current density values (10, 30 and 50 mA cm–2) at 25 °C and using 20 mg L–1 of PCP in 0.1 M NaOH (pH 10) as supporting electrolyte. The PCP concentration and the by-products of the oxidized solution were monitored during the oxidation process using UV and HPLC techniques. For the three current densities investigated it was found that the rate of PCP elimination depends only on the specific electrical charge. Likewise, the oxidation mechanism was proved to occur through the participation of adsorbed hydroxyl radicals (·OH) formed on the SnO2 surface, whatever the current density used. However, as the applied current density was increased, a current efficiency lower than 2% was obtained, which is due to mass transfer limitations. In addition, it was observed that the PCP was mineralized to CO2 with conversion percentages as high as 92% and at current density values as low as 10 mA cm–2. The PCP degradation produces two other by-products of oxidation (<10%), namely carboxylic acids, which are non-toxic compounds. Electronic Publication  相似文献   

8.
The two complexes, [RE(Gly)4(Im)(H2O)](ClO4)3(s)(RE = Eu, Sm), have been synthesized and characterized. The standard molar enthalpies of reaction for the following reactions, RECl3·6H2O(s)+4Gly(s)+Im(s)+3NaClO4(s) = =[RE(Gly)4(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l), were determined by solution-reaction colorimetry. The standard molar enthalpies of formation of the two complexes at T = 298.15 K were derived as Δf H mΘ {Eu(Gly)4(Im)(H2O)}(ClO4)3(s)} = = −(3396.6±2.3) kJ mol−1 and Δf H mΘ {Sm(Gly)4(Im)(H2O)}(ClO4)3(s)} = −(3472.7±2.3) kJ mol−1, respectively.  相似文献   

9.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

10.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

11.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

12.
WO3 films have been prepared onto IrO2-coated Ti substrate by electro-deposition, and as-deposited and annealed films have been characterized by using Raman spectroscopy. It was found that the asdeposited film consists of orthorhombic WO3 · H2O phase, which transforms to amorphous WO3 by annealing at 250°C and to monoclinic phase by annealing at and above 350°C. All electrochemical experiments were carried on Ti/IrO2/WO3 annealed at 450°C. The open-circuit potential could change significantly due to the hydration of the coating film. However this process is fairly slow. Reproducible voltammograms could be obtained quickly, further revealing high electrochemical stability of the Ti/IrO2/WO3 electrode. And the shapes of CV show the approximate rectangular mirror image, showing the typical characteristic of capacitive behavior. The specific capacitance obtained at a scan rate of 50 mV s−1 is 46 F g−1.  相似文献   

13.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

14.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

15.
Electrocatalytic oxygen reduction was studied on a RuxFeySez(CO)n cluster catalyst with Vulcan carbon powder dispersed into a Nafion film coated on a glassy carbon electrode. The synthesis of the electrocatalyst as a mixture of crystallites and amorphous nanoparticles was carried out by refluxing the transition metal carbonyl compounds in an organic solvent. Electrocatalysis by the cluster compound is discussed, based on the results of rotating disc electrode measurements in a 0.5 M H2SO4. A Tafel slope of −80.00±4.72 mV dec−1 and an exchange current density of 1.1±0.17×10−6 mA cm−2 was calculated from the mass transfer-corrected curve. It was found that the electrochemical reduction reaction follows the kinetics of a multielectronic (n=4e) charge transfer process producing water, i.e. O2+4H++4e→2H2O. Electronic Publication  相似文献   

16.
Two rare earth vanadyl complexes incorporating N-(p-benzoic acid methylene)imino dimethylene phosphonic acid, {[Ce(H2O)7]2[V10O28]}·11H2O (1) and {[Gd(H2O)7]2[V10O28]}·11H2O (2) were synthesized and characterized by IR spectra, UV-Vis spectra, Fluorescence spectra and single crystal X-ray analysis. In complexes 1 and 2, they are isomorphism, triclinic, space group P-1, V5+ ion for the hexa-coordinate with oxygen constitute [V10O28] 6− cluster, in which oxygen were taken μ1, μ2, μ3, μ6 method of allocation. Ce3+ ion is nine-coordinate. Complex 1 has a very strong selective of Zn2+ from the fluorescence spectra, and can as highly selective probes for Zn2+.  相似文献   

17.
Method of differential thermal analysis was used to study the thermolysis of a mixture of barium oxalate hydrate and α-SnO2·H2O, produced by precipitation from hydrochloric solutions. The methods of X-ray diffraction analysis, electron microscopy, and low-temperature nitrogen adsorption were used to examine the reaction products formed at various heating temperatures and determine their phase composition. The nanocomposite BaSnO3/SnO2 is the final product of thermolysis and subsequent heating to 950°C. The nanocomposite was used as a heterogeneous oxide additive for obtaining a CsNO2–BaSnO3/SnO2 composite solid electrolyte. The conductivity of the composite exceeds that of the starting salt by more than order of magnitude.  相似文献   

18.
Yttrium-doped lithium manganese oxide (LiMn0.98Y0.02O2) was prepared by ion exchange of lithium for sodium in NaMn0.98Y0.02O2 precursors obtained by using rheological phase reaction method. This material had small particle size, which was composed of grain size of about 100 nm. Especially, LiMn0.98Y0.02O2 delivered the initial discharge capacity of about 191 mA h g−1 at room temperature when cycled between 2.0 and 4.4 V vs Li/Li+. Moreover, it showed an excellent cycling behavior, its specific capacity remained above 173 mA h g−1 after 20 cycles, and the material did not transform into spinel structure during the electrochemical cycling according to the cyclic voltammograms and X-ray powder diffraction. The electrochemical results revealed that the doping of Y3+ improved the performance of LiMnO2 considerably.  相似文献   

19.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

20.
Heteropoly acid (HPA) H8(PW11TiO39)2xH2O (I) is synthesized by three different ways and studied by chemical analysis, potentiometric titration, mass-spectrometry, IR, 31P, 183W, and 17O NMR spectroscopy, thermogravimetry, and transmission electron microscopy. Anion I consists of two subparticles of the Keggin structure bridged by Ti-O-Ti. The dimeric anion exists in HPA aqueous solutions at [I] > 0.02 M. At pH > 0.6 it splits to a [PW11TiO40]5− monomer stable up to pH ∼ 6. When heated (150–400)°C, I splits into H3PW12O40 and, apparently, H3PW10Ti2O38 without phase separation. Thermolysis products are soluble and when dissolved in water turn again into I. Complete decomposition of I to oxides occurs at ∼450°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号