首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox properties of α-Keggin-type heteropolyanion clusters [XM12O40] n (X = Si, P; M = Mo, W) mainly depend on their constituent outer metal-oxygen cages {M12O36}. They act as “reservoirs”, through which the transfer and transition of electrons and protons may occur. At the atomic and molecular level, the redox properties of these clusters can be controlled and also tuned by modifying the metal M in the cages and the central heteroatom X of the clusters. Combined with relevant experimental results, this review summarizes our recent theoretical investigations of the effect of vanadium substitution on the redox properties of Keggin anion clusters. Theoretical modeling and calculation results showed that the oxidative ability of the modified species was increased by partial substitution of the cage M atoms of the Keggin clusters by vanadium atoms which have lower electronegativity. A linear correlation between the catalytic efficiency per vanadium atom and the microstructures of the vanadium(V)-substituted heteropolyanions [PV n Mo12−n O40](3+n)− (n = 1−3) was established for the first time. This relationship may be suitable to interpret the catalytic behavior of the title compounds in the hydroxylation of benzene to phenol, and may also be used in understanding other reactions such as the oxidative dehydrogenation of isobutyric acid and the nitration of adamantine. The establishment of this nearly linear structure-property relationship may lay the foundations of understanding the behavior of the title compounds in homogeneous catalytic oxidation reactions, and may direct the design of future catalysts and the choice of other catalytic reactions.  相似文献   

2.
Iron-containing clusters obtained by the decomposition of iron complexes in a solutionmelt of a polymeric matrix exhibit catalytic activity in the isomerization of dichlorobutenes. The activity of the clusters stabilized in the polytetrafluoroethylene and polyethylene matrices depends on the nature of the stabilizing matrix and the content of the metal in it,i. e., on the size and structure of the cluster, and substantially exceeds the activity of supported metals and powders. The clusters in the polytetrafluoroethylene matrix are more active than those in polyethylene. The dependence of the catalytic activity on the metal content has an extreme character, and for the polyethylene matrix it achieves a maximum at a metal content of ≈10%. In catalysts with this composition, the particle size increases to 4–5 nm, and the distance between them is shortened, on the average, to 10 nm, which leads to interaction of the cluster particles with each other. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 854–857, May, 2000.  相似文献   

3.
Summary.  The first case of an enantioselective hydrogenation of monosubstituted pyridines and furans with homogeneous rhodium diphosphine catalysts with low but significant enantioselectivities and catalyst activities is reported. Best enantioselectivities (ees of 24–27%) were obtained for the hydrogenation of 2- and 3-pyridine carboxylic acid ethyl ester and 2-furan carboxylic acid with catalysts prepared in situ from [Rh(nbd)2]BF4 and the chiral ligands diop, binap, or ferrocenyl diphosphines of the josiphos type. Turnover numbers (ton) were in the order of 10–20, turnover frequencies (tof) usually 1–2 h−1. Diphosphines giving 6- or 7-ring chelates led to higher ees than 1,2-diphosphines; otherwise, no clear correlation between ligand properties and catalytic performance was found. In some experiments black precipitates were observed at the end of the reaction, indicating the decomposition of the homogeneous catalysts for certain ligand/metal/substrate combinations. Received April 5, 2000. Accepted (revised) May 2, 2000  相似文献   

4.
Conclusions The peculiarities of the catalytic activity in olefin polymerizations which can find explanation in terms of the concepts suggested in this work are as follows. First, the low catalytic activity of the individual organometal compounds of group IV-VI transition metals is indicative [53] of the important role of the coordination state of the transition metal in AC, which, according to Cosse's model, must be octahedral (tetrahedral for individual metal-alkyl compounds MRn). Second, the activity of a catalytic system depends essentially on the nature of the ligand environment of the metal in AC. The catalysts based on titanium halides display the highest activity. Third, the results of [19, 20] show that the highly active catalytic centers of homogeneous Ziegler-Natta's systems are “cation-like” Zr(IV) complexes Cp2Zr+-R. All these features find explanation in terms of the concept of the competitive contributions from the AC metal s and d orbitals to the active M-R bond. Thus a transition of AC environment from tetrahedral to octahedral may be compared with a change in transition metal AO hybridization:d 3s1 (tetrahedron) ⇒d 3s1 (octahedron). Translated fromZhurnal Strukturnoi Khimii, Vol. 41, No. 2, pp. 391–404, March–April, 2000.  相似文献   

5.
Structural information on free transition metal doped aluminum clusters, Al n TM + (TM = Ti, V, Cr), was obtained by studying their ability for argon physisorption. Systematic size (n = 5 – 35) and temperature (T = 145 – 300 K) dependent investigations reveal that bare Al n + clusters are inert toward argon, while Al n TM + clusters attach one argon atom up to a critical cluster size. This size is interpreted as the geometrical transition from surface-located dopant atoms to endohedrally doped aluminum clusters with the transition metal atom residing in an aluminum cage. The critical size, n crit , is found to be surprisingly large, namely n crit = 16 and n crit = 19 – 21 for TM = V, Cr, and TM = Ti, respectively. Experimental cluster–argon bond dissociation energies have been derived as function of cluster size from equilibrium mass spectra and are in the 0.1–0.3 eV range.  相似文献   

6.

Abstract  

Impregnated Cu–Zn over Al2O3 exhibits high activity with the use of a lower amount of active metal relative to conventional co-precipitation catalysts. The activity of the catalyst could be enhanced by addition of urea to the metal salt solution during impregnation. The H2 yield from Cu–Zn catalysts with urea is 42%, while the H2 yield from catalyst without urea is only 28% in a continuous system at 250 °C and 1.2 atm. The H2 yield of the catalyst with urea in this study could compete with that of commercial catalysts. The role of urea in the Cu–Zn catalysts was investigated. X-ray diffraction (XRD) analysis of the catalysts shows that the crystal size of CuO could be reduced by the addition of urea. The XRD diffractogram of the catalyst prior to calcination also shows the formation of NH4NO3, which could aid in dissociation of metal clusters. Scanning electron microscopy (SEM) images of catalysts show the size of Cu–Zn compound clusters and also their dispersion over the Al2O3 surface on the impregnated catalysts. The addition of urea could also yield smaller Cu–Zn compound clusters and better dispersion compared with the impregnated catalyst without urea. Such impregnated Cu–Zn catalysts with urea could be alternative novel catalysts for methanol steam reforming.  相似文献   

7.
Density functional PBE/TZ2p quantum chemical calculations of activated complexes and pathways of model catalytic transformations of propane under the action of aluminum chloride-cobalt chloride ionic bimetallic complexes were carried out. The formation of an intermediate with a broken C-C bond can occur on the cationic cluster CoAlCl4 + characterized by the strongest coordination of propane molecule. The activation barrier to the reaction is ΔG = 25.0 kcal mol−1. Activation of alkane C-H bonds follows the alkyl pathway involving the formation of bimetallic alkyl complexes. The interaction of activated hydrocarbon fragments bound to transition metal atoms in cobalt-chloroaluminate clusters can result in alkane metathesis products (in this case, ethane and a polymetallic cluster containing an extendedchain alkyl radical).  相似文献   

8.
The Xα discrete variation (Xα-DV) method is used to calculate the electronic structures of the clusters modeling the spin-Peierls transition in CuGeO3. The63Cu NQR frequencies of two centers that fall within the simulated supercell are calculated. It is shown that the nature of the forbidden gap and the63Cu NQR spectral parameters depend on the motion of copper atoms in the chains. Some assumptions are made to explain the fact that dimerization in chains of Cu atoms is experimentally unobservable. Translated from Zhurnal Strukturnoi Khimii, Vol. 38, No. 1, pp. 43–50, January–February, 1997.  相似文献   

9.
Graphite particles were coated with Ni–P by electroless deposition using a conventional bath consisting of a nickel salt and hypophosphite. After 15 min of electroless deposition, the graphite particles were covered with 10 wt% nickel and 0.7–1.0 wt% phosphorus as analysed by wet chemical method. Surface morphology was studied by scanning electron microscopy (SEM). Electrochemical characterisation for the catalytic activity was done by cyclic voltammetry. Pure Ni powder and electroless Ni–P coated on graphite were used as catalysts for the electro-oxidation of dextrose (1.8 × 10−3 to 4.5 × 10−3 M) in 0.1 M KOH solution. Comparative studies revealed that electroless Ni–P coated on graphite particles acted as a better catalyst than pure Ni powder for catalytic reaction.  相似文献   

10.
Catalysts have been synthesized using the Anderson polyoxometalates (POMs) (NH4)4[Ni(OH)6Mo6O18] (NiMo6POM), (NH4)6[Co2Mo10O38H4] · 7H2O (Co2Mo10POM), and H6[Co2Mo10O38H4] (Co2Mo10HPA) as the precursors and hydrogen peroxide as the solvent. The catalysts have been characterized by low-temperature nitrogen adsorption, XPS, and HRTEM. Their catalytic properties have been tested in thiophene hydrodesulfurization and in the hydrodesulfurization and hydrogenation of components of diesel oil. The active phase of the catalysts synthesized using the POMs is the type II CoMoS phase in which the mean plate length is 3.6–3.9 nm and the mean number of MoS2 plate per plate packet is 1.8–2.0. Use of hydrogen peroxide provides an efficient means to reduce the proportion of Co2+ promoter atoms surrounded by oxygen in the case of an impregnating solution containing both an ammonium salt of a heteropoly acid and a Co2+ salt. In the catalysts synthesized using cobalt salts of Co2Mo10HPA, the support surface contains the multilayer type II CoMoS phase and cobalt sulfides. These catalyst show high catalytic properties in thiophene hydrogenolysis and diesel oil hydrorefining. Models are suggested for the catalysts synthesized using Anderson POMs.  相似文献   

11.
《中国化学快报》2023,34(3):107311
Utilizing metal-organic frameworks (MOFs) to design photocatalysts for CO2 reduction catalysts is an excellent idea but currently restricted by the relatively low activity. Enhancing CO2 affinity and tuning the oxidation state of metal clusters in MOFs might be a solution to improve the catalytic performance. Herein, the Cl-bridge atoms in the metal clusters of a cobalt MOF were easily exchanged with OH?, which simultaneously oxidized a portion of Co(II) to Co(III) and resulted in a much enhanced photocatalytic activity for CO2 reduction. In contrast, the original framework does not exhibit such superior activity. Comprehensive characterizations on their physicochemical properties revealed that the introduction of hydroxyl group not only greatly increases the CO2 affinity but also alters the oxidation state of metal clusters, resulting in significantly improved photocatalytic activities for CO2 reduction. This work provides important insight into the design of efficient photocatalysts.  相似文献   

12.
A qualitative algorithm for constructing large clusters of aerosil model structures is used. According to this algorithm and the classification of amorphous silicas, aerosil is classified with tectosilicas, which are characterized by close packing of silicon-oxygen tetrahedra. Two quantitative algorithms for constructing large close-packed clusters are proposed. The structures of the clusters having from 10 to 24 silicon atoms, completely optimized by quantum chemical methods, were obtained. Small, medium, and large clusters for modeling the local and collective properties of atomic and functional group packing in the aerosil structure are distinguished. Institute of Surface Chemistry, Ukrainian Academy of Sciences. Russian University of Peoples' Friendship. Translated fromZhurnal Struktumoi Khimii, Vol. 35, No. 3, pp. 16–26, May–June, 1994. Translated by O. Kharlamova  相似文献   

13.
Adsorption of 13C18O+12C16O mixtures on the Pt(2.9%)/γ-Al2O3, (Pt(2.6%)+Cu(2.7%))/γ-Al2O3, and (Pt(2.6%)+Cu(5.1%))/γ-Al2O3 catalysts was studied by FTIR spectroscopy. On the metallic Pt surface at coverages close to saturation, CO is adsorbed both strongly and weakly to form linear species for which the vibrational frequencies of the isolated 13C18O molecules adsorbed on Pt are ∼1940 and ∼1970 cm−1, respectively. The redistribution of intensities of the high-and low-frequency absorption bands in the spectra of adsorbed 13C18O indicates that these linear forms are present on the adjacent metal sites. The weak adsorption is responsible for the fast isotope exchange between the gaseous CO and CO molecules adsorbed on metal. The Pt-Cu alloys, in which the electronic state of the surface Pt atoms characteristic of monometallic Pt remains unchanged, are formed on the surface of the reduced Pt-Cu bimetallic catalysts. The decrease in the vibrational frequencies of the isolated C=O bonds in the isolated Pt-CO complexes suggests that the CO molecules adsorbed on the Cu atoms affect the electronic properties of Pt. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 831–836, May, 2007.  相似文献   

14.
A series of Pd/Al2O3–ZrO2 materials have been prepared via sol gel method as an attractive route to obtain more homogeneous binary oxides Al2O3–ZrO2. A Zr loading between 2 and 15 wt% was used to investigate the Zr promotion of Pd/Al2O3 materials. The prepared catalysts were calcined at two different temperatures. Very interesting results have been obtained at low zirconium content. A small amount of Zr is seen to be sufficient to stabilize the activity and to obtain good catalytic performances with developed textural properties compared to conventional catalysts used to oxidize methane. The increase of the zirconium loading is seen to decrease the catalytic activity may be due to the development of tetragonal zirconia phase detected by XRD. Similar effect has been observed after heating catalysts at high temperatures. A loss in BET surface area and in metal dispersion has been also observed for zirconium rich catalysts. A contradictory effect on textural and structural properties is seen after their calcination at 700 °C.  相似文献   

15.
Controlling the size and uniformity of metal clusters with atomic precision is essential for fine-tuning their catalytic properties, however for clusters deposited on supports, such control is challenging. Here, by combining X-ray absorption spectroscopy and density functional theory calculations, it is shown that supports play a crucial role in the evolution of monolayer-protected clusters into catalysts. Based on the acidic nature of the support, cluster-support interactions lead either to fragmentation of the cluster into isolated Au–ligand species or ligand-free metallic Au0 clusters. On Lewis acidic supports that bind metals strongly, the latter transformation occurs while preserving the original size of the metal cluster, as demonstrated for various Aun sizes. These findings underline the role of the support in the design of supported catalysts and represent an important step toward the synthesis of atomically precise supported nanomaterials with tailored physico-chemical properties.  相似文献   

16.
The effect of silicon-containing catalysts on the pyrolysis of propane-butane hydrocarbon mixture in a flow system was studied in the temperature range 500–850°C, the rate of the gas mixture flow 50–100 ml min−1, contact time 0.1–12.0 s, and the value of the heterogeneity factor 0.1–2.1×107 cm−1. The catalytic activity of different systems under similar conditions was compared, and the influence of various factors on the yield of ethylene and propylene was studied. The most active silicon-containing catalyst for the pyrolysis of propane-butane hydrocarbon mixture was found.  相似文献   

17.
The activity of 0.25–5% Ag/Al2O3 catalysts in the selective catalytic reduction of nitrogen oxides with n-hexane under the conditions of promotion with a small amount of H2 was studied. It was found that, upon the introduction of ∼1000 ppm of H2 into the reaction mixture, the Ag/Al2O3 samples containing 1–2% Ag exhibited optimum activity and selectivity. It was established that, in the presence of 1000 ppm of H2, the rate of the selective catalytic reduction of NO x was higher by a factor of 10–13, and the onset temperature of the reaction was lower by approximately 100°C. It was found by X-ray photoelectron spectroscopy, temperature-programmed reduction, and UV spectroscopy that the high activity of 1–2% Ag/Al2O3 catalysts was due to the presence of small Ag n δ+ and Ag m 0 clusters on their surface. A decrease in the concentration of Ag below the optimum value resulted in the predominance of an inactive ionic form on the catalyst surfaces. As the concentration of Ag was increased (>2%), large particles of Ag2O and Ag0, which facilitate the oxidation of n-C6H14, were formed to lead to a decrease in selectivity and in the degree of reduction of nitrogen oxides.  相似文献   

18.
The structure and hydrophilic-hydrophobic properties of functionalized single-wall carbon nanotubes are studied by the standard porosimetry method. It is shown that the functionalized nanotubes have highly hydrophilic surface; at that the summary surface area measured “by octane” decreased, as a result of the functionalizing, due to the blocking of the nanotubes’ inner channels by the functional groups located at the nanotubes’ ends. The nanotubes’ capacitive properties are studied; their charging-discharging curves appeared being highly reversible, unlike those of other carbonaceous materials. Catalytic properties of the functionalized nanotubes are studied, with particular tendency toward their using as a carrier of platinum catalysts for the methanol oxidation and oxygen electroreduction reactions. When minor amounts (5–10 μg cm−2) of platinum or platinum-ruthenium alloy are deposited onto the nanotubes’ hydrophilic surface, uniform layer of the catalyst is formed, with specific surface area up to 150–300 m2 g−1; high current of the methanol oxidation or oxygen electroreduction is observed at these catalysts. When the catalyst deposit mass increased, its specific surface area decreased, as well as the specific current of the reactions occurring thereon. When the current is related to the electrochemically active unit surface, the catalytic activity is nearly the same both for different catalyst mass deposited onto the nanotubes and the same catalyst mass at different carbonaceous carriers.  相似文献   

19.
Hydrotalcite-like compounds (HTlcs) can be used as the catalysts as it is since they contain various transition metal cations as the catalytically active species well dispersed on the basic support materials. Moreover, increasing numbers of the applications of HTlcs after the heat treatment have been found since the oxides with very small crystal size, stable to thermal treatments, are obtained after the calcination. The oxides possess interesting properties such as high surface area, basic properties and further form small and thermally stable metal crystallites by reduction. Moreover, the calcined oxides show a unique property, i.e., “memory effect,” which allows the reconstitution of the original hydrotalcite structure. We have developed the catalytic applications of hydrotalcites as it is and moreover the mixed oxides derived from hydrotalcites for various catalytic reactions, i.e., oxidation, dehydrogenation and reforming of hydrocarbons, and even for the reforming of methanol and the CO shift reaction. Aerobic oxidation of alcohols, Baeyer−Villiger oxidation of ketones and O3 oxidation of oxalic acid have been successfully carried out with the Mg−Al hydrotalcites containing Ni, Fe and Cu, respectively, as the catalysts in liquid phase. In the O3 oxidation of oxalic acid, the catalytic activity was enhanced by the “memory effect,” i.e., Mg(Cu)–Al hydrotaclite was reconstituted on the surface of Mg(Cu,Al)O periclase particles and oxalic acid was incorporated as anions in the hydrotalcite layer, resulting in an enhanced oxidation of oxalic acid. As the catalysts in the vapor phase reactions, Mg/Fe/Al mixed oxides prepared from Mg–Al(Fe) hydrotalcites and effectively catalyzed the dehydrogenation of ethylbenzene. Supported Ni metal catalysts have been prepared from Mg(Ni)–Al hydrotalcites and successfully used in the steam reforming and the oxidative reforming of methane and propane. Moreover, the Ni catalysts have been improved by combining a trace amount of noble metals by adopting the “memory effect” and used in the production of hydrogen for the PEFC under the daily startup and shutdown operation. Also starting from aurichalcite or hydrotalcite precursor as the precursor, Cu/Zn/Al catalysts with high Cu metal surface area have been prepared and successfully applied in the steam reforming of methanol and dimethyl ether, and moreover in the CO shift reaction.  相似文献   

20.
We present the first-principle calculations on the electronic excitations and second-order properties in solution phase of two typical inorganic trinuclear anionic clusters, [MoCu2S4(SPh)2]2− and [Mo2CuS4]1−(edt)2(PPh3) (edt=1,2-ethanedithiolato) in the framework of density functional theory (DFT). The computed excitation energies are in good agreement with the outcome of the measurements. The predicted values of the molecular quadratic hyperpolarizabilities are of the comparable order of those of the typical organometallic chromophores. We demonstrate the significant contributions to the second-order responses from the charge transfers between the metal centers (MMCT) which are ascribed to the direct metal–metal bonding interactions in these two charged clusters. This meaningful ligand-independent mechanism for the second-order response largely relates to metal–metal bonding strength, and the understanding will benefit to the future design of the new-generation molecular based nonlinear optical materials and optoelectronic devices by means of the conscious tuning of metal–metal interactions and metal-core structures of inorganic polynuclear clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号