首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
提出了一种由弱变锥形主工作区和强变锥形提取区组成的锥形磁绝缘线振荡器结构。该结构主工作区采用弱变结构,在保持频率基本不变的情况下,可有效增加群速度,利于微波提取。模拟结果表明:该结构可以在二极管电压500 kV、电流32 kA的条件下稳定输出平均功率2.5 GW、频率为2.65 GHz的微波;实验上也获得了GW级、频率为2.69 GHz的微波输出。  相似文献   

2.
 对一种由弱变和强变结构组成的锥形磁绝缘线振荡器进行了长脉冲实验研究。在二极管电压350 kV左右、电流约25 kA、脉宽约128 ns的条件下,获得了500 MW、脉宽约90 ns的高功率微波输出。对波形中出现的拐点进行了分析,研究表明:二极管电压波形好坏会对微波源的性能造成严重的影响,较好的电压波形是实现长脉冲运行的关键。同时对采用不锈钢平面负载、不锈钢丝网状负载以及石墨负载电子收集极进行了实验研究,研究表明采用石墨收集极可以输出较好的微波波形。  相似文献   

3.
对一种由弱变和强变结构组成的锥形磁绝缘线振荡器进行了长脉冲实验研究。在二极管电压350 kV左右、电流约25 kA、脉宽约128 ns的条件下,获得了500 MW、脉宽约90 ns的高功率微波输出。对波形中出现的拐点进行了分析,研究表明:二极管电压波形好坏会对微波源的性能造成严重的影响,较好的电压波形是实现长脉冲运行的关键。同时对采用不锈钢平面负载、不锈钢丝网状负载以及石墨负载电子收集极进行了实验研究,研究表明采用石墨收集极可以输出较好的微波波形。  相似文献   

4.
对一种由弱变和强变结构组成的锥形磁绝缘线振荡器的频率特性进行了分析。通过对实验中出现的跳频现象和腔体特性分析对比研究表明,跳频后出现的新的工作模式也属于近π模,但其场结构和稳定π模的场结构明显不同。通过改变提取部分慢波叶片周期开展的验证性实验也表明了分析的正确性。研究表明,匹配的驱动平台、良好的二极管真空度以及合适的二极管位置是锥形磁绝缘线振荡器能够稳定运行的保证。  相似文献   

5.
S波段锥形磁绝缘线振荡器频率特性   总被引:1,自引:1,他引:0       下载免费PDF全文
 对一种由弱变和强变结构组成的锥形磁绝缘线振荡器的频率特性进行了分析。通过对实验中出现的跳频现象和腔体特性分析对比研究表明,跳频后出现的新的工作模式也属于近π模,但其场结构和稳定π模的场结构明显不同。通过改变提取部分慢波叶片周期开展的验证性实验也表明了分析的正确性。研究表明,匹配的驱动平台、良好的二极管真空度以及合适的二极管位置是锥形磁绝缘线振荡器能够稳定运行的保证。  相似文献   

6.
对L波段双阶梯阴极磁绝缘线振荡器(MILO)进行了粒子模拟,在输入电压710 kV,电流56.6kA条件下,得到微波输出功率为4.8 GW,微波频率1.22 GHz。根据模拟结果设计MILO实验装置并开展实验研究,介绍了测试方法与测试系统,并对辐射微波功率、频率和模式进行了测量。在二极管电压740 kV,电流61 kA条件下,测得辐射微波功率为3.57 GW,微波脉宽46 ns,微波频率1.23 GHz,功率转换效率8%,辐射微波模式为TM01模。  相似文献   

7.
对L波段双阶梯阴极磁绝缘线振荡器(MILO)进行了粒子模拟,在输入电压710 kV,电流56.6 kA条件下,得到微波输出功率为4.8 GW,微波频率1.22 GHz。根据模拟结果设计MILO实验装置并开展实验研究,介绍了测试方法与测试系统,并对辐射微波功率、频率和模式进行了测量。在二极管电压740 kV,电流61 kA条件下,测得辐射微波功率为3.57 GW,微波脉宽46 ns,微波频率1.23 GHz,功率转换效率8%,辐射微波模式为TM01模。  相似文献   

8.
 在双频磁绝缘线振荡器的基础上,提出了多频磁绝缘线振荡器的设想,并利用电磁模拟软件,通过对磁绝缘线振荡器的高频结构进行优化,设计出了多频磁绝缘线振荡器。给出了能够同时稳定输出微波频率数目为1,2,3,4,5的多频磁绝缘线振荡器的粒子模拟结果。结果表明:多频磁绝缘线振荡器可以产生多个频率的高功率微波信号,其功率效率较单频磁绝缘线振荡器的功率效率有明显降低。  相似文献   

9.
提出了利用角向分区来产生双频高功率微波的思想,并根据常规磁绝缘线振荡器的互作用主要在轴向而与角向无关的物理机制,通过在常规磁绝缘线振荡器内设置谐振腔深度的角向分区,建立了L波段双频磁绝缘线振荡器的模型,并利用电磁模拟软件,优化设计了L波段双频磁绝缘线振荡器。粒子模拟的结果为:在电子束电压为530 kV,电流为45.5 kA的条件下,得到了稳定的双频高功率微波输出,其微波频率分别为1.28 GHz和1.50 GHz,周期平均功率约为2.65 GW,功率效率约为11%,两个频率的频谱幅度相差约0.4 dB。  相似文献   

10.
L波段双频磁绝缘线振荡器的设计与粒子模拟   总被引:10,自引:10,他引:0       下载免费PDF全文
 提出了利用角向分区来产生双频高功率微波的思想,并根据常规磁绝缘线振荡器的互作用主要在轴向而与角向无关的物理机制,通过在常规磁绝缘线振荡器内设置谐振腔深度的角向分区,建立了L波段双频磁绝缘线振荡器的模型,并利用电磁模拟软件,优化设计了L波段双频磁绝缘线振荡器。粒子模拟的结果为:在电子束电压为530 kV,电流为45.5 kA的条件下,得到了稳定的双频高功率微波输出,其微波频率分别为1.28 GHz和1.50 GHz,周期平均功率约为2.65 GW,功率效率约为11%,两个频率的频谱幅度相差约0.4 dB。  相似文献   

11.
 结合负载限制型磁绝缘线振荡器(MILO)和渐变型MILO的特点,提出了一种新型双阶梯阴极型MILO。该器件前2个叶片为扼流片,中间3个叶片为主作用叶片,后面1个为提取叶片,在电流发射区与慢波结构径向相对的阴极部分分为3段,形成双阶梯阴极结构。根据Maxwell方程和Floquet定理导出其色散方程,并对其振荡主频作了理论分析。2.5维粒子模拟表明,器件工作频率为1.21 GHz,与理论预测相符,双阶梯的引入,对器件阻抗和振荡频率影响较小。在工作电压458 kV、电流40.5 kA条件下,双阶梯阴极结构将MILO输出功率从2.20 GW提高到2.88 GW,功率转换效率从12.0%提高到15.5%。  相似文献   

12.
L波段硬管磁绝缘线振荡器的研制   总被引:1,自引:12,他引:1       下载免费PDF全文
 对L波段磁绝缘线振荡器(MILO)的二极管进行了研究,优化了器件的设计,以及辐射天线一体化的设计,研制出了L波段硬管 MILO。硬管MILO的实验结果是:在电压为450 kV、电流为35 kA的条件下,L波段硬管 MILO的输出微波频率为1.22 GHz,功率大于1.5 GW,微波脉宽半高宽约20 ns,功率效率约10%;硬管MILO的保真空时间超过了5 h。  相似文献   

13.
 设计了一种阶梯阴极型S波段磁绝缘线振荡器,通过对其色散关系的研究,选择了合理的结构参数。通过对开放腔模型的分析,得到了磁绝缘线振荡器的谐振频率和有载品质因数。粒子模拟表明,在外加电压523 kV、束流49.7 kA时,微波输出功率4.35 GW,频率2.10 GHz,功率转换效率16.7%。  相似文献   

14.
针对当前高功率微波(HPM)中的热点器件磁绝缘线振荡器(MILO) 频率低、效率低等问题,提出了一种可以沿x方向平面展开的平面MILO。该器件也是一种低阻抗高功率微波器件,通过一个低外加磁场来代替常规MILO中的磁绝缘电流,辅助实现器件的磁绝缘,从而实现器件效率的提高。结合PIC模拟,建立一个外加低磁场的C波段平面MILO,并根据其慢波结构(平面折绉表面)特点给出相应的色散曲线,确定微波器件工作点,利用2.5维全电磁粒子模拟软件对其进行数值模拟,在输入为4.0 GW电功率(工作电压约800 kV)的条件下,模拟得到频率为6.56 GHz的微波输出,通过优化外加磁场,使得模拟微波输出功率达到1.22 GW,功率效率在C波段条件下超过30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号