首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allylation of 1,3-dicarbonyl compounds with allylic alcohols was successfully accomplished using rare earth metal (III) bis(perfluorooctanesulfonyl)imide [RE(NPf2)3, RE = La∼Lu] as catalysts in fluorous solvents. Ytterbium bis(perfluorooctanesulfonyl)imide [Yb(NPf2)3] catalyzes the high efficient reaction of allylation in fluorous solvents. By simple separation, fluorous phase containing only catalyst can be reused several times.  相似文献   

2.
Synthesis of trisubstituted imidazoles was successfully accomplished using rare earth(III) perfluorooctanesulfonates (RE(OPf)3), RE = Sc, Y, La-Lu as catalysts in fluorous solvents. Ytterbium perfluorooctanesulfonates (Yb(OPf)3) catalyze the high efficient synthesis of trisubstituted imidazoles in fluorous solvents. By simple separation, fluorous phase containing only catalyst can be reused several times.  相似文献   

3.
Min Shi  Shi-Cong Cui  Ying-Hao Liu 《Tetrahedron》2005,61(21):4965-4970
In this paper, we describe a useful Mannich-type reaction in fluorous phase. By use of perfluorodecalin (C10F18, cis- and trans-mixture) as a fluorous solvent and perfluorinated rare earth metal salts such as Sc(OSO2C8F17)3 or Yb(OSO2C8F17)3 (2.0 mol%) as a catalyst, the Mannich-type reaction of arylaldehydes with aromatic amines and (1-methoxy-2-methylpropenyloxy)trimethylsilane can be performed for many times without reloading the catalyst and the fluorous solvent.  相似文献   

4.
Palladium(II) perfluorooctanesulfonate [Pd(OSO2Rf8)2] catalyses the highly efficient Suzuki reaction in the presence of a catalytic amount of perfluoroalkylated-pyridine as a ligand in a fluorous biphase system (FBS). The fluorous phase containing the active palladium species is easily separated and can be reused several times without a significant loss of catalytic activity.  相似文献   

5.
Catalytic condensation of o-phenylenediamine and aldehydes was accomplished using rare earth(III)perfluorooctane sulfonates (RE(OPf)3), RE = Sc, Y, La ∼ Lu) as catalysts in fluorous solvents. Ytterbium perfluorooctanesulfonates (Yb(OPf)3) catalyzes the high-efficient synthesis of benzimidazole derivatives in fluorous solvents. By simple separation, fluorous phase containing only catalyst can be reused several times.  相似文献   

6.
Xiuhua Hao 《Tetrahedron letters》2005,46(15):2697-2700
In a fluorous biphase system, Hf[N(SO2C8F17)2]4 complex (1 mol %) catalyzes Friedel-Crafts acylation of aromatic compounds such as anisole, toluene and chlorobenzene, and the corresponding aromatic ketones are obtained in satisfactory to high yields. The catalyst is selectively soluble in lower fluorous phase and can be easily recovered by simple phase separation. Furthermore, the catalyst can be reused without decrease of activity in most cases.  相似文献   

7.
Yangen Huang 《Tetrahedron》2004,60(38):8341-8346
Fluorous glycol derivatives 5 were prepared and evaluated as reagents for the protection of carbonyl groups for use in fluorous synthesis. The acetals formed from fluorous diol 5b (Rf=n-C8F17) with carbonyl compounds can be separated and purified by simple fluorous-organic extraction.  相似文献   

8.
Cyclopropanation of allylic alcohols with Et2Zn and CH2I2 in the presence of a catalytic amount of fluorous disulfonamide 3 afforded the corresponding cyclopropylmethanols in 69-96% yield with 49-83% ee. The fluorous ligand 3 was readily recovered from the reaction mixture by the fluorous solid-phase extraction (FSPE) and could be reused without a significant loss of the catalytic activity and enantioselectivity.  相似文献   

9.
Rare earth (III) perfluorooctane sulfonates (RE(OPf)3) catalyze the three-component Mannich-type reactions of different ketones with various aromatic aldehydes and aromatic amines in fluorous media to give various β-arylamino ketones in good yields. By simple separation of the fluorous phase containing only catalyst, reaction can be repeated several times.  相似文献   

10.
Ytterbium perfluorooctanesulfonate [Yb(OPf)3] catalyses the highly efficient Baylis-Hillman reaction in the presence of a catalytic amount of a novel perfluoroalkylated-pyridine as a ligand in a fluorous biphasic system (FBS) composed of toluene and perfluorodecalin. The new process can be carried out successfully without the use of a stoichiometric amount of Lewis base. The fluorous phase containing the active catalytic species is easily separated and can be reused several times without significant loss of catalytic activity.  相似文献   

11.
Ytterbium complexes supported by a linked bis(β‐ketoiminato) ligand, N,N′‐ethylenebis(benzoylacetoimine) (H2L), were synthesized and their catalytic behavior was explored. The reaction of YbCl3 with 1 equiv. of LLi2 afforded the mononuclear ytterbium chloride LYbCl(THF)2 ( 1 ) in high yield. Complex 1 can be used as starting material to prepare β‐ketoiminate‐ytterbium derivatives. Treatment of complex 1 with NaN(SiMe3)2 produced the dimeric ytterbium amide {LYb[N(SiMe3)2]}2 ( 2 ), while the similar reaction of complex 1 with NaOAr (ArO = 2, 6‐tBu‐4‐MeC6H2O) led to the mononuclear ytterbium aryloxide LYbOAr(THF) ( 3 ). The three complexes were well detected by elemental analysis and single‐crystal X‐ray analysis. It was found that complexes 2 and 3 can initiate the ring‐opening polymerization of ?‐caprolactone with moderate activity.  相似文献   

12.
Wen‐Bin Yi  Chun Cai 《合成通讯》2013,43(21):3827-3833
Ytterbium perfluorooctanesulfonate [Yb(OPf)3] catalyses the highly efficient synthesis of 2,3‐dihydro‐1H‐1,5‐benzodiazepines in fluorous solvents. By simple separation of the fluorous phase containing only the catalyst, the reaction can be repeated several times.  相似文献   

13.
Yb3F4S2: A mixed‐valent Ytterbium Fluoride Sulfide according to YbF2 · 2 YbFS Attempts to synthesize ytterbium(III) fluoride sulfide (YbFS) from 2 : 3 : 1‐molar mixtures of ytterbium metal (Yb), elemental sulfur (S) and ytterbium trifluoride (YbF3) after seven days at 850 °C in silica‐jacketed gastight‐sealed arc‐welded tantalum capsules result in the formation of the mixed‐valent ytterbium(II,III) fluoride sulfide Yb3F4S2 (tetragonal, I4/mmm; a = 384,61(3), c = 1884,2(4) pm; Z = 2) instead. The almost single‐phase product becomes even single‐crystalline and emerges as black shiny platelets with square cross‐section when equimolar amounts of NaCl are present as fluxing agent. Its crystal structure can be described as a sheethed intergrowth arrangement of one layer of CaF2‐type YbF2 followed by two layers of PbFCl‐type YbFS parallel (001). Accordingly there are two chemically and crystallographically different ytterbium cations present. One of them (Yb2+) is surrounded by eight fluoride anions in a cubic fashion, the other one (Yb3+) exhibits a capped square‐antiprismatic coordination sphere consisting of four F and five S2– anions. In spite of being structurally very plausible, the obvious ordering of the differently charged ytterbium in terms of a localized mixed valency can only be fictive because of the black colour of Yb3F4S2 which rather suggests charge delocalization coupled with polaron activity.  相似文献   

14.
Highly fluorinated photoresist polymers that can undergo photodimerization reactions were designed using an anthracene‐based monomer. Through the random radical copolymerizations of 6‐(anthracen‐9‐yl)hexyl methacrylate ( AHMA ) and semiperfluorodecyl methacrylate ( FDMA ) with four different compositions, polymers with Mn = 20,000–27,000 (Mw/Mn = 2.0–2.9) were prepared in benzotrifluoride. The polymers, in particular fluorous solvent‐soluble imaging material‐2 ( FSIM‐2 ), showed sufficient solubility in fluorous solvents, including hydrofluoroethers, but were rendered insoluble by UV exposure (365 nm). This photochemical solubility change was evaluated quantitatively by a quartz crystal microbalance technique, along with tracing the chemical reaction by UV–vis spectroscopy. Finally, FSIM‐2 and fluorous solvents were applied to the photolithographic patterning of organic light‐emitting diode pixels. In the patterning protocol involving the lift‐off of resist films in fluorous solvents, FSIM‐2 was recognized as a promising photoreactive material when compared with a reference polymer P(FDMA‐MAMA) , which necessitates acidolysis reactions for lithographic imaging. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1252–1259  相似文献   

15.
The catalyst of rare earth(III) perfluorooctanesulfonates (RE(OSO2C8F17)3, RE = Sc, Y, La-Lu) were prepared from either rare earth chlorides(III) or oxides and perfluorooctanesulfonic acid. The perflates thus obtained act as novel catalysts for Friedel-Crafts alkylation in fluorous biphasic system. Perfluorohexane (C6F14), perfluoromethylcyclohexane (C7F14), perfluorotoluene (C7F8), perfluorooctane (C8F18), perfluorooctyl bromide (C8F17Br) and perfluorodecalin (C10F18, cis- and trans-mixture) can be used as fluorous solvents for this reaction. By simple separation of the fluorous phase containing only catalyst, alkylation can be repeated many times.  相似文献   

16.
In fluorous biphase system, hafnium(IV) bis(perfluorooctanesulfonyl)amide complex (Hf[N(SO2C8F17)2]4) was found to be a highly reactive and recyclable Lewis acid catalyst for Friedel-Crafts acylation and Prins reaction at significantly low catalyst loadings (≤1 mol%). In these reactions, Hf[N(SO2C8F17)2]4 is selectively soluble in the lower fluorous phase and can be recovered simply by phase separation. Furthermore, the catalyst can be reused without decrease of activity.  相似文献   

17.
The easily accessible fluorous bisoxazolines 3a-b bearing two fluorous ponytails are efficient ligands in the palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenylprop-2-enyl acetate with carbonucleophiles in benzotrifluoride or CH2Cl2, enantioselectivities of up to 95% being obtained. The ligand is easily separated from the reaction mixture by simple extraction with a fluorous solvent.  相似文献   

18.
A recyclable and reusable (S) diphenylpyrrolinol silyl ether I organocatalyst bearing a n-C8F17 fluorous tag has been demonstrated for promoting the asymmetric Michael addition reactions of a wide range of aldehydes with both aryl and alkyl-substituted nitroolefins and excellent levels of enantio- and diastereoselectivities are achieved. The catalyst I can be conveniently recovered by fluorous solid-phase extraction and subsequently reused (up to eight cycles) without significant loss of its catalytic activity and stereoselectivity for the process.  相似文献   

19.
Homogeneous catalysts PtCl2[5,5′-bis-(n-ClCF2(CF2)3CH2OCH2)-2,2′-bpy] (2A) and PtCl2[5,5′-bis-(n-HCF2(CF2)3CH2OCH2)-2,2′-bpy] (2B), which contained short fluorous chains, were synthesized and used in catalysis of hydrosilylation of alkynes. In these reactions the thermomorphic mode was effectively used to recover these catalysts from the reaction mixture up to eight cycles by taking advantage of heterogeneous phase separation at ice temperature. This kind of catalysis had previously been observed in fluorous catalysts of platinum containing about 50% F-content, but in this work the percentage of F-content is decreased to only about 30%, by which we termed them as “very light fluorous”. Our new type of catalyst with limited number of F-content is considered as the important discovery in the fluorous technology field as the reduced number of fluorine atoms will help to be able to comply the EPA 8-carbon rule. The metal leaching after the reaction has been examined by ICP-MS, and the testing results show the leaching of residual metal to be minimal. Additionally, comparing these results to our previous work, fluorous chain assisted selectivity has been observed when different fluorous chain lengths of the catalysts are used. It has been found that there exists fluorous chain assisted better selectivity towards β-(E) form in the Pt-catalyzed hydrosilylation of non-symmetric terminal alkyne when the Pt catalyst contains short fluorous chain (i.e., 4 Cs). Phenyl acetylenes showed the opposite regioselectivity due to pi-pi interaction while using the same catalyst via Markovnikov’s addition to form terminal vinyl silane, which is then a major product for Pt-catalyzed hydrosilylation of terminal aryl acetylene with triethylsilane. Finally, the kinetic studies indicate that the insertion of alkyne into the Pt-H bond is the rate-determining step.  相似文献   

20.
The first total synthesis of cucurbitoside A was achieved using a new fluorous N-phenylcarbamoyl (FCar) protecting group. The FCar group was introduced into carbohydrates in high yield and was selectively removed with Bu4NNO2 without damaging other acyl protecting groups. The synthetic intermediates were easily isolated by fluorous solid-phase extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号