首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 2,9,16,23‐tetrakis‐4′‐(2,3,5,6‐tetrafluoro)‐phenoxy‐phthalocyaninatometalfree and metal(II) complexes, (H2PcBzF16, ZnPcOBzF16, CuPcOBzF16, and CoPcOBzF16) (Bz: Benzene) (2H, Zn, Cu, and Co), have been prepared directly from the corresponding 4′‐(2,3,5,6‐fluorophenylthio)‐phthalonitrile compounds in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in high boiling quinoline solvent. Tetrafluoro atoms on 2,3,5,6‐position of benzene at the peripheral sites of phthalocyanines (Pcs) give rise interesting solubility to tetrakismetallophthalocyanines. Although all complexes were soluble in DCM, CHCl3, THF, DMF, and DMSO with increasing order, complexes synthesized, particularly H2PcBzF16, CuPcOBzF16, have very limited solubility in DMF and DMSO. The complexes have been characterized by elemental analysis, FTIR, 1H NMR, UV–vis, and MALDI–TOF mass spectral data. The cyclic voltammetry and differential pulsed voltammetry of the complexes show that while H2PcBzF16, CuPcOBzF16, and ZnPcOBzF16 give ligand‐based reduction and oxidation processes, CoPcOBzF16 gives both ligand and metal‐based redox processes, in harmony with the common metallophthalocyanine complexes. Redox processes due to both aggregated and disaggregated species were simultaneously observed during the first reduction process. The nature of the metal‐based redox processes was confirmed using spectroelectrochemical measurements. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:262–271, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20545  相似文献   

2.
4-(Chloroacetyl)diphenyl ether was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst in a Friedel-Crafts reaction. Then, its keto oxime and dioxime derivatives were prepared. 4-phenoxy-(N-4-chlorophenylamino)phenylglyoxime (H2L) was synthesized from 4-(phenoxy)chlorophenylglyoxime and 4-chloroaniline. Ni(II), Co(II) and Cu(II) complexes of H2L were obtained. The mononuclear Ni(II), Co(II) and Cu(II) complexes of H2L have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The structure of the ligand was identified by FT-IR, 1H NMR, 13C NMR, 13C NMR (APT) spectroscopy and elemental analysis data. The structures of the complexes were characterized on the basis of FT-IR, ICP-AES, UV-Vis, elemental analysis, magnetic susceptibility measurements, and cyclic voltammetry. The electrochemical measurements were obtained by using cyclic voltammetry in DMF solution at room temperature. The electrochemical behaviors of H2L and its complexes showed that the redox process of H2L has one irreversible oxidation wave, whereas the redox processes of the complexes have both oxidation and reduction waves with metal centered.  相似文献   

3.
Dyad molecules containing the 2,3,5,6‐tetrakis(2‐pyridyl)pyrazine (tppz) ligand with general formula [(tpy)Ru(μ‐tppz)Ru(X)(L‐L)]n+ (X=Cl, CF3COO, or H2O; L‐L=2,2′‐bipyridine (bpy) or 3,5‐bis(2‐pyridyl)pyrazole (Hbpp); tpy=2,2′:6′,2“‐terpyridine) have been prepared, purified, and isolated. The complexes have been characterized by analytical and spectroscopic techniques and by X‐ray diffraction analysis for two of them. Additionally, full electrochemical characterization based on cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry has been also performed. The pH dependence of the redox couples for the aqua complexes have also been studied and their corresponding Pourbaix diagrams drawn. Furthermore, their capacity to catalytically oxidize organic substrates, such as alcohols, alkenes, and sulfides, has been carried out chemically, electrochemically, and photochemically. Finally, their capacity to behave as water oxidation catalysts has also been tested.  相似文献   

4.
Four tripodal ligands L1–4 derived from 4,5‐diazafluoren‐9‐one were synthesized. L1–2 formed by the reaction of 4,5‐diazafluoren‐9‐oxime with 1,3,5‐tris(bromomethyl)benzene, and 1,1,1‐tris(p‐tosyloxymethyl)propane, respectively and L3–4 formed by the condensation of 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene with 1,3,5‐tris(bromomethyl)benzene, and 1,1,1‐tris(p‐tosyloxymethyl)propane, respectively. Four trinuclear complexes [(bpy)6Ru3L1–4](PF6)6 ( Ru‐L1–4 ) were obtained by reaction of Ru(bpy)2Cl2 · 2H2O with ligands L1–4. The photophysical behaviors of these complexes were investigated by UV/Vis absorption and emission spectrometry. The complexes display metal‐to‐ligand charge transfer absorptions at 441–445 nm and emissions at 571–578 nm. Cyclic voltammetry data of the complexes show one RuII‐centered oxidation and three successive ligand‐centered reductions.  相似文献   

5.
Phthalocyanine compounds of novel type based on a bridged bis‐ligand, denoted “intracavity” complexes, have been prepared. Complexation of clamshell ligand 1,1′‐[benzene‐1,2‐diylbis(methanediyloxy)]bis[9(10),16(17),23(24)‐tri‐tert‐butylphthalocyanine] (clam,tBuPc2H4, 1 ) with lanthanide(III) salts [Ln(acac)3] ? n H2O (Ln=Eu, Dy, Lu; acetylacetonate) led to formation of double‐deckers clam,tBuPc2Ln ( 2 a – c ). Formation of high molecular weight oligophthalocyanine complexes was demonstrated as well. The presence of an intramolecular covalent bridge affecting the relative arrangement of macrocycles was shown to result in specific physicochemical properties. A combination of UV/Vis/NIR and NMR spectroscopy, MALDI‐TOF mass‐spectrometry, cyclic voltammetry, and spectroelectrochemistry provided unambiguous characterization of the freshly prepared bis‐phthalocyanines, and also revealed intrinsic peculiarities in the structure–property relationship, which were supported by theoretical calculations. Unexpected NMR activity of the paramagnetic dysprosium complex 2 b in the neutral π‐radical form was observed and examined as well.  相似文献   

6.
Stable bis(-diketonato) bridged binuclear complexes prepared by reacting [RuX3(EPh3)3] (X = Cl or Br; E = P or As) with (RCO)(MeCO)CH–Y–CH(COR)(COMe) [R = Me or Ph; Y = (CH2)6, (CH2)10] in a 2:1 molar ratio in benzene, have been characterised by elemental analyses, i.r., electronic, e.p.r. and cyclic voltammetry. The oxidation state of the metal ion in these complexes is confirmed as + 3 by electrochemical and by e.p.r. measurements. The complexes belong to a low-spin d5 configuration. An attempt has been made to ascertain the effect of the length of the bridging ligand on the electron transfer processes by cyclic voltammetry in these binuclear complexes. Based on the above studies an octahedral geometry has been tentatively proposed. The new complexes have been subjected to the antifungal activity studies.  相似文献   

7.
使用溶剂热合成法,以p-bitmb配体(1,4-二(1-咪唑基-亚甲基)-2,3,5,6-四甲基苯)与[(η6-cymene)Os(μ-Cl)Cl]2或[(η6-bip)Os(μ-Cl)Cl]2为原料,合成了2种单核芳基锇配合物,并利用核磁、质谱、元素分析和X射线单晶衍射等手段对配合物进行了表征。配合物1属于单斜晶系,P21/c空间群,为一个单核锇的结构。中心锇原子与2个配体p-bitmb上的氮原子以及氯原子进行配位,2个配体的另一个咪唑基团通过一个亚甲基碳原子进行连接形成咪唑嗡离子,形成一个类似"碗"状的结构。一个氯离子通过氢键装载在结构的空腔内。利用核磁共振氢谱研究了结构中亚甲基的来源,并研究了配合物在缓冲溶液中的稳定性。用紫外吸收光谱、圆二色谱以及粘度法研究了配合物与DNA的相互作用,结果表明,配合物中的亚甲基来自于溶剂二氯甲烷。配合物以嵌入的方式与CT-DNA相互作用,结合常数分别为3.222×10~4 L·mol-1 (1)和1.53×10~4 L·mol-1 (2),同时配合物会减弱DNA的碱基堆积作用并可以使DNA发生解旋。  相似文献   

8.
2(3),9(10),16(17),23(24)-Tetrakis-4′-[3,5-bis-(trifluoromethyl)-phenoxy]-phthalocyanines, {M[Pc-β(OBz-(CF3)2)4]}, (M = Zn(II), Cu(II), Co(II) and Ni(II)) were synthesized and characterized by elemental analysis, FTIR, 1H NMR, UV–Vis and MS (Maldi-TOF) spectral data. It is shown that the 4-(3,5-bis(trifluoromethyl)-phenoxy) moieties on the periphery affect the solubility, spectroscopic data and electrochemistry of the tetrakis metallophthalocyanines. The cyclic voltammetry and differential pulsed voltammetry of the complexes give well-defined redox couples in harmony with common metallophthalocyanine complexes. Electrochemical studies show that the complexes exhibit stable monoanionic M{Pc-β-[(OBz-(CF3)2)4]}1−, dianionic M{Pc-β-[(OBz-(CF3)2)4]}2− and monocationic M{Pc-β-[(OBz-(CF3)2)4]}1+ species during the reduction and oxidation processes. When compared with the unsubstituted analogues, the redox potentials of the complexes shifted to more positive potentials due to the electron-withdrawing fluorine groups.  相似文献   

9.
Two novel biferrocenylcarboxylate benzene derivatives, namely, 1,4-bis(2-Ferrocenecarboxylate) benzene (Fc2B) and 1,4-bis(2-Ferrocenecarboxylate)-2′-methylbenzene (Fc2M), have been synthesized. The as-prepared complexes have been confirmed by IR, 1H NMR and MS. The electron transfer mechanisms of the two compounds and the other three bisferrocenyl bridged benzene complexes, 1,4-disferrocenyl benzene (Fc2P), 1,4-bis(2-ferrocenylvinyl) benzene (Fc2E), and 1,4-bis(2-ferrocenylacetyleneyl) benzene (Fc2Q), have been studied by cyclic voltammetry (CV), in situ difference FT-IR (SNFTIR), and rapid-scan time-resolved FT-IR spectroelectrochemistry (RS-TRS FT-IR). The CV results suggest that the redox formal potentials of the five bridged complexes are depended on their bridged groups and abilities of withdrawing electron. IR absorption peaks arisen from intermediate appearance and disappearance in the oxidation and reduction process of Fc2B, Fc2E, Fc2P and Fc2Q were clearly observed by the in situ rapid-scan or SNFTIR spectroelectrochemistry. The results indicated the redox process of the four bisferrocenyl bridged benzene complexes involved two consecutive one-electron steps. Although the intermediate peak of Fc2M was not observed by in situ FT-IR spectroelectrochemistry, we still thought the redox process of Fc2M could involve two consecutive one-electron steps.  相似文献   

10.
A series of CuII, NiII, and CoII complexes with 5-(pyridylmethylidene)-substituted 2-thiohydantoins (L) were synthesized by the reactions of the corresponding organic ligands with MCl2·nH2O. The resulting complexes have the composition LMCl2 (M = Cu or Ni) or L2MCl2 (M = Co). The reactions with N(3)-unsubstituted thiohydantoins afford complexes containing four-membered metallacycles, in which the metal ion is coordinated by the S and N(3) atoms of the thiohydantoin ligand. The reactions of N(3)-substituted thiohydantoins give complexes in which the S and N(1) atoms are involved in coordination. Study by IR spectroscopy demonstrated that the pyridine nitrogen atom is not involved in coordination. Based on the results of electrochemical study of the ligands and complexes by cyclic voltammetry and calculation of their frontier orbitals by the PM3(tm) method, the mechanism of oxidation and reduction of these compounds was proposed. In the first reduction and oxidation steps, the metal atom in the copper and nickel complexes remains, apparently, intact, and these processes occur with the involvement of the ligand fragments, viz., the coordinated thiohydantoin ligand and chloride anion, respectively. In the cobalt complexes, the first reduction step occurs at the ligand; the first oxidation state, at the metal atom. Measurements of the contact angle of aqueous wetting and electrochemical study demonstrated that carboxy-containing 2-thiohydantoins and their complexes can be adsorbed on the cystamine-modified gold surface. The structures of the complexes on the surface differ from the structures of these complexes in solution. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 978–990, June, 2006.  相似文献   

11.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-3-propionic acid (Hpmpa) and bis(2-pyridylmethyl)amino-4-butyric acid (Hpmba), react with CuCl2 to give rise to the mononuclear complexes [Cu(Hpmpa)Cl]Cl · 2H2O (1) and [Cu(Hpmba)Cl2]· H2O (2). These complexes have been characterized by X-ray crystallography, spectroscopic and cyclic voltammetry. Crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the three nitrogen atoms of the Hpmpa ligand and one chloride anion occupying the basal plane and an oxygen atom from the carboxylate group coordinating the axial position. In (2), the coordination environment around the copper(II) ion reveals a distorted square-pyramids with three nitrogen atoms of the Hpmba ligand and one chloride anion that comprise the basal plane, whereas the apical position is filled by the chloride anion. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuIII/CuI processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the N-pendant carboxylate groups.  相似文献   

12.
A new vic-dioxime ligand, N,N′-bis(aminopyreneglyoxime) (LH2), and its copper(II), nickel(II) and cobalt(II) metal complexes were synthesized and characterized by elemental analyses, IR, UVVIS and 1H and 13C NMR spectra (for the ligand). Mononuclear complexes were synthesized by a reaction of ligand (LH2) and salts of Co(II), Ni(II), and Cu(II) in ethanol. The complexes have the metal-ligand ratio of 1: 2 and metals are coordinated by N,N′ atoms of vicinal dioximes. The ligand acts in a polydentate fashion bending through nitrogen atoms in the presence of a base, as do most vic-dioximes. Detection of a H-bonding in the Co(II), Ni(II), and Cu(II) complexes by IR revealed the square-planar MN4 coordination of mononuclear complexes. Fluorescent properties of the ligand and its complexes arise from pyrene units conjugated with a vic-dioxime moiety. Fluorescence emission spectra of the ligand showed a drastic decrease in its fluorescence intensity upon metal binding. The electrochemical properties of the complexes were studied by the cyclic voltammetry technique. The nickel complex displayed an irreversible oxidation process while the copper complex exhibited a quasi-reversible oxidation and reduction processes based on the copper Cu(II)/Cu(III) and Cu(II)/Cu(I) couples, respectively.  相似文献   

13.
A new vic-dioxime ligand containing benzophenone hydrazone units, N′-(benzophenone hydrazone)glyoxime [LH2] has been prepared from benzophenone hydrazone and anti-chloroglyoxime in absolute ethanol. Mononuclear nickel(II), cobalt(II), copper(II), zinc(II), and cadmium(II) complexes were also synthesized. Ligand and complexes were characterized by elemental analyses, FT-IR, 1H NMR, and 13C NMR spectroscopy, magnetic moments, and DTA/TG techniques. On the basis of the magnetic and spectral evidences a square-planar geometry for Ni(II) and Cu(II) complexes, tetrahedral for Cd(II) and Zn(II) complexes, and octahedral for Co(II) complex were proposed. Redox behaviors of ligand and its complexes were also investigated by cyclic voltammetry at the glassy carbon electrode.  相似文献   

14.
A new half unit and some new symmetrical or asymmetrical VO(IV) and Cu(II) complexes of tetradentate ONNO Schiff base ligands were synthesized. The probable structures of the complexes have been proposed on the basis of elemental analyses and spectral (IR, UV–Vis, electron paramagnetic resonance, ESI-MS) data. VO(IV) and Cu(II) complexes exhibit square pyramidal and square-planar geometries, respectively. The complexes are non-electrolytes in dimethylformamide (DMF) and dimethylsulfoxide. Electrochemical behaviors of the complexes were studied using cyclic voltammetry and square wave voltammetry. Half-wave potentials (E 1/2) are significantly influenced by the central metal and slightly influenced by the nature of substituents on salen. While VO(IV) complexes give VOIV/VOV redox couples and a ligand-based reduction process, Cu(II) complexes give only a ligand-based reduction. In situ spectroelectrochemical studies were employed to determine the spectra of electrogenerated species of the complexes and to assign the redox processes. The g-values were calculated for all these complexes in polycrystalline state at 298?K and in frozen DMF (113?K). The evaluated metal–ligand bonding parameters showed strong in-plane σ-bonding for some Cu(II) complexes.  相似文献   

15.
凌欢欢  李楠  杨帆  吉昕  夏勇  曹都  祁争健 《物理化学学报》2013,29(11):2465-2474
为获取具有活性官能团的接枝型、高性能荧光传感配合物,合成了2-(4-氨基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-NH2)、2-(4-羟基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-OH)、2-(4-羧基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-COOH)和2-(4-硝基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉(CImPB-NO2)四种配体,借助紫外-可见(UV-Vis)吸收光谱、荧光(PL)光谱、循环伏安法(CV)和含时密度泛函理论(TD-DFT)对上述四种配体与过渡金属元素钌(Ru)所形成的配合物的光电性能进行研究.结果表明:四种配合物均在可见光区域有较强吸收,发光范围覆盖绿色到红色光波段.在极性溶剂N,N-二甲基甲酰胺(DMF)中,以2-(4-氨基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉为配体所构建的钌配合物([Ru(CImPB-NH2)(bpy)2]2+的荧光量子产率(Φ)较不含咪唑环的5-氨基邻菲啰啉合钌([Ru(phen-NH2)(bpy)2]2+)的提高了67%,以2-(4-羧基苯基)-1H-咪唑[4,5-f][1,10]邻菲啰啉所构建的钌配合物([Ru(CImPB-COOH)(bpy)2]2+)的Φ可达29.8%,是[Ru(phen-NH2)(bpy)2]2+的18倍.理论计算表明:配体中取代苯环、咪唑环和邻菲啰啉的稠环共平面,形成共价大π体系,其有效共轭长度较邻菲啰啉母体有显著增加,配合物是以Ru为中心的近似八面体构型,理论计算的电子吸收光谱和跃迁性质与实验结果相一致.上述研究有可能为接枝型、高性能荧光传感配合物的设计和筛选提供实验依据.  相似文献   

16.
Ge  Qing-Chun  Guo  Yan-He  Lin  Hai  Lin  Hua-Kuan  Zhu  Shou-Rong 《Transition Metal Chemistry》2003,28(5):572-578
The stability constants of ZnII, CuII, NiII and CoII with different tripodal ligands, 1,3,5-tris(2,5-diazaoctxyl)benzene (L1), 1,3,5-tris(2,5-diazanonxyl)benzene (L2) and 1,3,5-tris[3-(2-pyridyl)-2-azapropyl]benzene (L3) have been studied at 25 °C in 0.1 mol dm–3 KNO3 aqueous solution using potentiometric titrations. During the titrations, the ligand concentrations were kept constant at 1 × 10–3 mol dm–3, while 1:1 and 1:3 metal:ligand ratios were used for each system. The results indicated that, in the 1:1 metal:ligand ratio, the binding of MII to the ligand gives rise to several 1:1 complexes differing in their degree of protonation whereas in the 3:1 ratio, polynuclear complexes are formed. Additionally, the ternary complexes of the tripod ligands, with CuII-5-substituted-1, 10-phenanthroline have been investigated and the results show that linear free energy relationship exists in such ternary systems.  相似文献   

17.
Abstract

By spectrophotometric titration, 1H NMR and cyclic voltammetry the processes of Co(II)-5,10,15,20-tetraphenylporphyrin, Co(II)-5,10,15,20-tetraphenyl-2,3,7,8,12,13,17,18-tetrabenzoporphyrin, Co(II)-2,3,7,8,12,13,17,18-octaphenyl-5,10,15,20-tetraazaporphyrin, Co(II)-2,3,7,8,12,13,17,18-octa(4-bromphenyl)-5,10,15,20-tetraazaporphyrin and Co(II)-2,3,7,8,12,13,17,18-octa(4-nitrophenyl)-5,10,15,20-tetraazaporphyrin interaction with imidazole (Im) in benzene in the presence and absence of atmospheric oxygen has been investigated. If the Co(II)-porphyrins with high Epc upon complexation with the imidazole form stable mono-axial complexes Co(II)P(Im), then the Co(II)-porphyrins with low Epc are oxidized into low-spin six-coordinate Co(III)-porphyrins with formation of bis-axial complexes Co(III)P(Im)2. The thermodynamic and kinetic parameters of the coordination and oxidation processes have been calculated and corresponding structural correlations have been carried out.  相似文献   

18.
Reaction of 2-(2′-hydroxyphenylazo)phenol with [Rh(PPh3)3Cl] in refluxing benzene in presence of triethylamine afforded a red complex in which the ligand is coordinated to rhodium as a tridentate O,N,O-donor. However, similar reaction of [Rh(PPh3)3Cl] with 2-(2′-carboxyphenylazo)-4-methylphenol yielded two complexes, viz. a blue one and a green one. In both the complexes the ligand is coordinated as C,N,O-donor. However, in the blue complex orthometallation takes place from the ortho-carbon atom, which bears -COOH group via decarboxylation and in green one orthometallation occurs from the other ortho-carbon. Structures of all the three complexes were determined by X-ray crystallography. In all the three complexes rhodium is sharing the equatorial plane with the tridentate ligand and a chloride, and the two triphenylphosphines are axially disposed. All of the complexes show intense MLCT transitions in the visible region. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation on the positive side of SCE and a reduction of the coordinated azophenolate ligand on the negative side.  相似文献   

19.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

20.
In this article, the electrochemical behavior of the complexation of (2E,3E)-2H-1,4-benzothiazine-2,3 (4 H)-dionedioxime with Ni(II) is studied. The experiments were performed in DMF in the presence of tetraethylammoniumtetrafluoroborate (0.1 M) as a supporting electrolyte and studied by using square-wave voltammetry, cyclic voltammetry, and differential pulse polarography. Reductions of the complexes are irreversible. The ligand forms 1 : 1 and 1 : 2 (metal : ligand) complexes with Ni(II). Stability constants of the formed complexes were evaluated with the modified DeFord–Hume method at different ligand concentrations as 3.21(±0.03) × 106 and 2.73(±0.03) × 106, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号