首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
易清风  黄武  于文强  李磊  刘小平 《中国化学》2008,26(8):1367-1372
利用电热法,一步制备出新型的钛基Ni-Sn/Ti电极(Ni8Sn/Ti, Ni7Sn3/Ti 和 Ni/Ti)。扫描电镜(SEM)图像表明,催化剂以片状的纳米颗粒形式沉积于钛基体上。利用电化学伏安技术、电位阶跃法和电化学交流阻抗谱(EIS),研究了这些电极在1mol.L�1NaOH溶液中对甲醇氧化反应的电催化活性。研究表明,与Ni7Sn3/Ti,Ni/Ti以及多晶镍电极相比,Ni8Sn/Ti电极对甲醇氧化反应表现出更高的阳极氧化电流和更低的起始电位。EIS分析表明,在本文所考察的阳极电位和甲醇浓度下,Ni8Sn/Ti电极对甲醇氧化反应显示出极低的电荷传递电阻。结果表明,这种新型的钛基Ni8Sn/Ti电极对甲醇氧化反应具有极高的电催化活性。  相似文献   

2.
Production of multicarbon products (C2+) from CO2 electroreduction reaction (CO2RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2RR catalysts that are highly selective for C2+ products via electrolyte‐driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine‐modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm?2 for C2+ products at ?0.9 V vs. RHE. Operando X‐ray absorption spectroscopy and quasi in situ X‐ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.  相似文献   

3.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   

4.
Engineering electronic properties by elemental doping is a direct strategy to design efficient catalysts towards CO2 electroreduction. Atomically thin SnS2 nanosheets were modified by Ni doping for efficient electroreduction of CO2. The introduction of Ni into SnS2 nanosheets significantly enhanced the current density and Faradaic efficiency for carbonaceous product relative to pristine SnS2 nanosheets. When the Ni content was 5 atm %, the Ni‐doped SnS2 nanosheets achieved a remarkable Faradaic efficiency of 93 % for carbonaceous product with a current density of 19.6 mA cm?2 at ?0.9 V vs. RHE. A mechanistic study revealed that the Ni doping gave rise to a defect level and lowered the work function of SnS2 nanosheets, resulting in the promoted CO2 activation and thus improved performance in CO2 electroreduction.  相似文献   

5.
Direct electron transfer (DET) reactions of recombinant tobacco peroxidase (rTOP), namely direct electroreduction of Compound I/Compound II and heme Fe3+/2+ conversion, were studied on gold electrodes. rTOP of wild type, non-glycosylated, was produced using an Escherichia coli expression system. At pH 5.0, the redox potential for direct electrochemical transformation of the Fe3+/2+ of the peroxidase heme was −143 mV vs. AgAgCl, and 0.26 ± 0.07 pmol of the adsorbed rTOP were in DET contact with the gold electrode. The total amount of the adsorbed rTOP estimated from QCM data was 53 ± 5 pmol/cm2 or 1.67 pmol when referred to the surface area of the electrodes used for electrochemical measurements. Of 1.67 pmol of adsorbed rTOP, only 0.76 pmol were catalytically active. DET between Au and the enzyme was also studied in the reaction of the bioelectrocatalytic reduction of H2O2 by cyclic voltammetry and amperometric detection of H2O2 at +50 mV with rTOP-modified Au electrodes placed in a wall-jet flow-through electrochemical cell. Maximal bioelectrocatalytic current response of the rTOP-modified gold electrodes to H2O2 was observed at pH 5.0 and stemmed from its bioelectrocatalytic reduction based on DET between Au and the active site of rTOP. Kinetic analysis of the DET reactions gave 52% of the adsorbed rTOP molecules active in DET reactions (0.4 pmol of adsorbed catalytically active rTOP, correspondingly), which correlated well with the non-catalytic-voltammetry data. DET was characterised by a heterogeneous ET rate constant of 13.2 s−1, if one takes into account the QCM data, and 19.6 s−1, if the amount of rTOP estimated from the data on DET transformation of Fe3+/2+ couple of rTOP is considered. The sensitivity for H2O2 obtained for the rTOP-modified Au electrodes was 0.7 ± 0.1 A M−1 cm−2. These are the first ever-reported data on DET reactions of anionic plant peroxidases on bare gold electrodes.  相似文献   

6.
Various Fe(II) complexes have been incorporated into Prussian blue (PB)|polyaniline (PAn)-modified electrodes, and their spectroelectrochemical properties been investigated using in situ and ex situ FTIR methods. It is shown that large anionic complexes once incorporated in the PAn matrix are not dedoped during the potential cycling and the charge balance is maintained by dedoping or incorporating electrolyte cations. This electrode system was applied to the electrocatalytic reduction of CO2 in aqueous solution, and the reduction products were identified by taking in situ FTIR spectra during the anodic stripping. At potentials higher than 0 V, the IR bands associated with the loss of carboxylic acid at 1362 cm−1 and the gain of CO2 at 2343 cm−1 were simultaneously observed, indicating that the CO2 was derived from the reoxidation of carboxylic acid. It is therefore confirmed that CO2 can be reduced to organic species including carboxylic acid on the PB|PAn-modified electrode with anionic Fe(II) complexes in aqueous solution, with an indication that the existence of the anionic metal complex is essential to such mediated reduction of CO2.  相似文献   

7.
Electrodes modified with iron porphyrin and carbon nanotubes (FeP–CNTs) were prepared and used for CO2 electroreduction. The adsorption of iron porphyrin onto the multiwalled carbon nanotubes was characterized by scanning electron microscopy and ultraviolet and visible spectroscopy. The electrochemical properties of the modified electrodes for CO2 reduction were investigated by cyclic voltammetry and CO2 electrolysis. The FeP–CNT electrodes exhibited less negative cathode potential and higher reaction rate than the electrodes modified only with iron porphyrin or carbon nanotubes. A mechanism of the synergistic catalysis was proposed and studied by electrochemical impedance spectroscopy and electron paramagnetic resonance. The direct electron transfer between iron porphyrin and carbon nanotubes was examined. The current study shed light on the mechanism of synergistic catalysis between CNTs and metalloporphyrin, and the iron porphyrin–CNT-modified electrodes showed great potential in the efficient CO2 electroreduction.  相似文献   

8.
A heterogeneous formate anion catalyst for the transformative reduction of carbon dioxide (CO2) based on a polystyrene and divinylbenzene copolymer modified with alkylammonium formate was prepared from a widely available anion exchange resin. The catalyst preparation was easy and the characterization was carried out by using elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and solid-state 13C cross-polarization/magic-angle spinning nuclear magnetic resonance (13C CP/MAS NMR) spectroscopy. The catalyst displayed good catalytic activity for the direct reduction of CO2 with hydrosilanes, tunably yielding silylformate or methoxysilane products depending on the hydrosilanes used. The catalyst was also active for the reductive insertion of CO2 into both primary and secondary amines. The catalytic activity of the resin-supported formate can be predicted from the FTIR spectra of the catalyst, probably because of the difference in the ionic interaction strength between the supported alkylammonium cations and formate anions. The ion pair density is thought to influence the catalytic activity, as shown by the elemental and solid-state 13C NMR analyses.  相似文献   

9.
Gas diffusion electrodes (GDEs), including GDE-In0.90Sn0.10, GDE-In0.47Sn0.53 and GDE-In0.22Sn0.78, were prepared by electrodeposition of In–Sn alloys on carbon fiber paper, and then used to explore the electroreduction of CO2 to formate in aqueous solution. Compared with commercial indium or Sn foil catalysts, the GDE-In0.90Sn0.10 electrode in particular is shown to have excellent catalytic performance towards electroreduction of CO2 to formate, with a high Faradaic efficiency (~ 92%). More importantly, the catalytic activity of GDE-In0.90Sn0.10 remained reasonably stable over a 22-hour period of electrolysis, and a relatively high electrolytic current density (15 mA cm 2) was obtained in an aqueous medium, demonstrating its potential for electrochemical reduction of CO2 to formate.  相似文献   

10.
Electrocatalytic reduction of CO2 into usable chemicals is a promising path to address climate change and energy challenges. Herein, we demonstrate the synthesis of unique coinage metal (Cu, Ag, and Au) nanodendrites (NDs) via a facile galvanic replacement reaction (GRR), which can be effective electrocatalysts for the reduction of CO2 in an ethanolamine (EA) solution. Each metal ND surface was directly grown on glassy-carbon (GC) substrates from a mixture of Zn dust and the respective precursor solution. The electrocatalytic activities of the synthesized ND surfaces were optimized for CO2 reduction in EA solution by varying their composition. It was determined that a 0.05 mol fraction of EA exhibited the highest catalytic activity for all metal NDs. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques showed that metal-ND electrodes possessed higher current densities, lower onset potentials and lower charge-transfer resistances for CO2 reduction than their smooth polycrystalline electrode counterparts, indicating improved CO2 reduction catalytic activity. It was determined, using FTIR and NMR spectroscopy, that formate was produced as a result of the CO2 reduction.  相似文献   

11.
Three new Cu(II)–Ni(II) heterodinuclear complexes: [Cu(PMoxd)Ni(phen)2](ClO4)2 (1), [Cu(PMoxd)Ni(NO2-phen)2](ClO4)2 (2), [Cu(PEoxd)Ni(Me2-bpy)2](ClO4)2 (3), [where Cu(PMoxd)=N,N′-bis(pyridyl-methyl)oxamidatocopper(II), Cu(PExod)=N,N′-bis(2-pyridyl-ethyl)oxamidatocopper(II), phen=1,10-phenanthroline and NO2-phen=5-nitro-1,10-phenanthroline and bpy=2,2′-bipyridine] were prepared and characterized by i.r. and electronic spectra, and by magnetic properties. The magnetic analysis was carried out by means of the theoretical expression of the magnetic susceptibility deduced from the spin Hamiltonian H=−2JS1S2, leading to J=−70.83 cm−1 (1); −56.23 cm−1 (2); −57.30 cm−1 (3), indicating a weak antiferromagnetic spin–exchange interaction between Cu(II) and Ni(II) ions within three complexes.  相似文献   

12.
In situ Fourier Transform Infrared (FTIR) spectroscopy was used to study the anion effect in ethanol oxidation on Pt (111) surface modified by rhodium and tin, Pt(111)/Rh/Sn. The in situ FTIR spectra showed that ethanol oxidation reaction pathway is strongly influenced by the nature of the electrolyte anion. In perchloric and sulfuric acid electrolytes were observed the formation of acetaldehyde, acetic acid and CO2; however in phosphoric acid the acetic acid is not observed. The sulfuric acid is the most favorable electrolyte for acetaldehyde and CO2 formation.  相似文献   

13.
We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4′‐bipyridine (bipy). The Au‐bipy‐Cu composite catalyzes the CO2RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at ?0.9 V to provide C‐products, among which CH3CHO (25 % FE) dominates the liquid product (HCOO?, CH3CHO, and CH3COO?) distribution (75 %). The enhanced CO2RR catalysis demonstrated by Au‐bipy‐Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C‐products) catalysis which is further promoted by bipy. The Au‐bipy‐Cu composite represents a new catalyst system for effective CO2RR conversion to C‐products.  相似文献   

14.
An overall carbon-neutral CO2 electroreduction requires enhanced conversion efficiency and intensified functionality of CO2-derived products to balance the carbon footprint from CO2 electroreduction against fixed CO2. A liquid Sn cathode is herein introduced into electrochemical reduction of CO2 in molten salts to fabricate core–shell Sn−C spheres (Sn@C). An in situ generated Li2SnO3/C directs a self-template formation of Sn@C. Benefitting from the accelerated reaction kinetics from the liquid Sn cathode and the core–shell structure of Sn@C, a CO2-fixation current efficiency higher than 84 % and a high reversible lithium-storage capacity of Sn@C are achieved. The versatility of this strategy is demonstrated by other low melting point metals, such as Zn and Bi. This process integrates energy-efficient CO2 conversion and template-free fabrication of value-added metal-carbon, achieving an overall carbon-neutral electrochemical reduction of CO2.  相似文献   

15.
We have computed the structures, and select vibrational spectra, electron density and molecular orbital contour plots of plutonium(VI) complexes of environmental importance such as [PuO2(CO3)2]2− and [PuO2(CO3)3]4−. We show that Ca2+ is efficacious in gas-phase modeling of electronic and spectroscopic properties of multiply charged plutonyl di and tricarbonate anions through complexes such as PuO2(CO3)2Ca and [PuO2(CO3)3Ca3]2+.  相似文献   

16.
An ethylene glycol (EG) solution containing Au(III) and Sn(IV) compounds, and conditions for the electrochemical deposition of Au–Sn alloy based on AuSn and Au5Sn intermetallics with total tin content of 30–55 at % are proposed. Fundamental difficulties of the deposition of alloys with high tin content, (including eutectic Au–Sn alloy) from aqueous electrolytes are revealed. It is determined via voltammetry that the simultaneous deposition of gold and tin from aqueous and EG electrolytes proceeds with the depolarization effect of both Au(III) and Sn(IV) as a result of the formation of the alloy, the increase in the rate of tin cathodic reduction being more noticeable in case of EG solution. Formation of SnCl2EG(H2O)2+ complex upon the dissolution of SnCl4 · 5H2O in glycol, the stability of the composition of tetracyanoaurate ions upon the dissolution of K[Au(CN)4], and the weakening of intermolecular interactions in EG with small amounts of water were revealed via IR spectroscopy. It is suggested that the depolarization effect is due not only to alloy formation, but also to the formation of SnCl2EG(H2O)2+ cations, their association with Au(CN)4- anions, and a change in the mechanism of Au(III) and Sn(IV) reduction.  相似文献   

17.
In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2 electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOx species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4 and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuI species under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1 product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.  相似文献   

18.
In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2 electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuOx species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4 and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuI species under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1 product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.  相似文献   

19.
The electroreduction of carbon dioxide using renewable electricity is an appealing strategy for the sustainable synthesis of chemicals and fuels. Extensive research has focused on the production of ethylene, ethanol and n-propanol, but more complex C4 molecules have been scarcely reported. Herein, we report the first direct electroreduction of CO2 to 1-butanol in alkaline electrolyte on Cu gas diffusion electrodes (Faradaic efficiency=0.056 %, j1-Butanol=−0.080 mA cm−2 at −0.48 V vs. RHE) and elucidate its formation mechanism. Electrolysis of possible molecular intermediates, coupled with density functional theory, led us to propose that CO2 first electroreduces to acetaldehyde-a key C2 intermediate to 1-butanol. Acetaldehyde then undergoes a base-catalyzed aldol condensation to give crotonaldehyde via electrochemical promotion by the catalyst surface. Crotonaldehyde is subsequently electroreduced to butanal, and then to 1-butanol. In a broad context, our results point to the relevance of coupling chemical and electrochemical processes for the synthesis of higher molecular weight products from CO2.  相似文献   

20.
Zusammenfassung Zur Anreicherung von Spurenelementen aus Lösungen reinster Thalliumpräparate wird die Matrix Thallium als TlJ ausgefällt. Dabei bleiben die Spuren Mg, Zn, Al, Ga, In, Fe, Co, Ni, Mn, Sn, La, Ce, Th und U quantitativ in Lösung, während Bi, Cu, Pb und Cd sowie die Edelmetalle Ag, Hg, Pd, Au und Pt vom Niederschlag mitgerissen werden. Die Adsorption der für die Reinheitsprüfung des Thalliums wichtigen Elemente Bi, Cu, Pb und Cd kann verhindert werden, wenn sie mit Hilfe von ÄDTA in Komplexanionen übergeführt werden. Als Fällungsmittel wird NaJ verwendet. Zur spektrochemischen Bestimmung werden Pb, Cd, Bi, Ni, Co und In als DDTC-Komplexe mit Chloroform extrahiert. Nach Zusatz einer Mischung von Lithiumcarbonat-Kohle und den Referenzelementen Sn und Pd wird der Eindampfrückstand im Gleichstrombogen analysiert. Cu und Fe werden photometrisch bestimmt.
Enrichment and spectrochemical determination of trace elements in high-purity thallium preparations
For the enrichment of trace elements in solutions of high-purity thallium samples, thallium is precipitated in form of TlI. In this process the noble metals Ag, Hg, Pd, Au, Pt and also Bi, Cu, Pb and Cd will be co-precipitated, whereas many other elements (Mg, Zn, Al, Ga, In, Fe, Co, Ni, Mn, Sn, La, Ce, Th, U) will remain completely in solution. The adsorption of the four elements Bi, Cu, Pb, Cd, which are important for the purity control of thallium compounds, can be prevented, if they are complexed with EDTA to form complex anions. The precipitating reagent is NaI. For the spectrochemical determination of Pb, Cd, Bi, Ni, Co, and In, the trace elements are extracted as DDTC complexes with chloroform. After the addition of a mixture of Li2CO3, carbon, and the reference elements Sn and Pd, the sample is analysed, using the d.c. arc. Cu and Fe are determined spectrophotometrically.


Wir danken dem Fonds der chemischen Industrie für die finanzielle Unterstützung dieser Arbeit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号