首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
在290-365K的温度区间内考察了月桂胺盐酸盐晶体红外光谱随温度的变化规律。结果表明:月桂胺盐酸盐在339K发生了固-固结构相变, 该相变的预相变起始点为327K。在327K以下的低温相中, 晶体中分子的碳氢链以高度有序的全反式构象存在, 极性头部的三个N-H-Cl氢键是不等价的。在327-339K的中间过渡相, 碳氢链中出现了旁式构象, 分子链间相互作用减弱。不等价的N-H-Cl氢键的差异减小。在339K以上的高温相中, 分子旁式链构象的增多导致了分子链横向堆积无序性的明显增加, 三个N-H-Cl氢键已变得等价。  相似文献   

2.
王玮  李来明 《应用化学》1992,9(5):25-28
月桂胺盐酸盐晶体的红外光谱研究表明,标题化合物两个结构相变的起始温度分别为327和339K。在327K以下晶体中分子以TT构象存在并以分子链相互平行的叉指状形式填充,339K以上分子以TG构象和部分GTG'构象存在并以非叉指状的六方形式填充,在327~339K之间则是一个分子构象由有序到无序、链填充由叉指状到非叉指状转变的中间过渡相。  相似文献   

3.
氯化癸铵的低频拉曼光谱研究   总被引:1,自引:0,他引:1  
在290—340 K的温度范围内考察了氯化癸铵的低频拉曼光谱, 指认了210 cm~(-1)附近的谱带为分子烷基链的纵向声子振动带, 低于100 cm~(-1)的谱带为晶格振动带, 结果表明DeAC晶体存在313 K和321 K两个结构相变。在313 K以下的低温相, DeAC分子以完全有序的全反式链构象存在, 在313—321 K的中间相, 分子烷基链出现了旁式构象, 高温相与中间相相比主要是分子链横向堆积有序度明显降低, 而分子链构象特征无明显差异。  相似文献   

4.
四氯合锌酸二(正十一烷基铵)晶体相变的Raman光谱   总被引:2,自引:0,他引:2  
郭宁  王玮  曾广赋  席时权 《化学学报》1994,52(7):705-710
用Raman光谱研究了[n-C~11H~23NH~3]~2ZnCl~4(简记为C~nZn)配合物的固-固相变。结果表明, 配合物产生的固-固相变主要与烷烃链的堆积结构和分子构象变化有关, 在T~cl=25℃的相变是由于烷烃链的侧向堆积和分子构象的有序到部分无序变化。在中间相, 分子链局部产生旁式构象。在T~c2=87℃的相变主要来源于烷烃链从部分构象有序到完全无序的变化, 高温相形成了构象完全无序相, 相应于烷烃链的"熔化"。  相似文献   

5.
用Raman光谱研究了[n-C_(11)H_(23)NH_3]_2ZnCl_4(简记为C_nZn)配合物的固-固相变.结果表明,配合物产生的固-固相变主要与烷烃链的堆积结构和分子构象变化有关.在 T_(c1)=25℃的相变是由于烷烃链的侧向堆积和分子构象的有序到部分无序变化.在中间相,分子链局部产生旁式构象.在T_(c2)=87℃的相变主要来源于烷烃链从部分构象有序到完全无序的变化.高温相形成了构象完全无序相.相应于烷烃链的“熔化”.  相似文献   

6.
王玮  李来明 《分析化学》1992,20(7):769-773
在280~320K的温度范围内考察了30%十六烷基三甲基溴化铵水溶液的红外光谱随温度的变化。结果表明该体系的凝聚胶-液晶相转变温度为300K。在300K以下的凝聚胶相,分子的极性头部基团处于高度“固定”的状态,分子的碳氢链以有序的相互平行方式排列,极性头与碳氢链之间有一定的倾斜角。在300K以上的液晶相,极性头内部CH_3-(N~+)基团以及整个极性头与碳氢链之间发生了旋转,碳氢链变为以六方亚晶胞填充形式存在,旦扭曲式构象异构体数量显著增多,极性头与碳氢链之间已不存在倾斜角,分子的亲水极性头和疏水碳氢链部分都处于“融化”状态。  相似文献   

7.
癸胺盐酸盐分子构象的拉曼光谱   总被引:4,自引:0,他引:4  
王玮  李来明 《应用化学》1991,8(1):14-17
用拉曼光谱考察了物态变化、水溶液浓度、温度和稀土离子等对癸胺盐酸盐分子构象的影响。结果表明固态标题化合物分子以有序的全反式链构象存在,在大于临界胶束浓度的水溶液中分子以无序的旁式链构象存在;增加浓度、升高温度和添加稀土离子都使得链的扭曲和无序程度增加。  相似文献   

8.
郭宁  王玮 《应用化学》1994,11(4):25-30
采用变温红外光谱研究了层结构标题配合物的固。固相变机理;相变主要与烷烃链和-NH_3极性端基结构变化有关,主要来源于烷烃链的堆积结构和构象的有序。无序变化,同时伴有N-H…Cl氢键强度的降低,由于在高温烃链产生GTG+GTG'和临近端基的TG构象以及GG链段,链大量扭曲,形成了烷烃链的“熔化”态,发现同相和异相C-C伸缩振动频率对烷烃“链熔化”相变很敏感,可用于表征烷烃链的链长变化。  相似文献   

9.
利用变温直流磁化率测定,在外加磁场强度为±1T,磁场平行于晶体b轴,发现在301-302Kα-甘氨酸有动态磁手性相变.α-甘氨酸晶体的每个晶胞包含四个分子,属于具有中心对称结构的P21/n群,电荷中心对称,不导电.在晶体中,两层之间的N (3)—H(8)…O(1)和N (3)—H(8)…O(2)氢键,沿b轴相互交叉反向配对排列.在303K,用原子力显微镜可观察到α-甘氨酸晶体表面分子层与层间有规则的交叉螺旋排列.结合中子衍射确定相变机制为,在相变温度及外加磁场H=±1T时,α-甘氨酸中的N (3)—H(8),电子自旋反转为(邙).因为N (3)—H(8)…O(1)和N (3)—H(8)…O(2)两反向氢键的强度和键角不同,由动态磁手性和磁电效应,产生电荷中心不对称,导致304K附近的热电相变.  相似文献   

10.
利用变温直流磁化率测定, 在外加磁场强度为依1 T, 磁场平行于晶体b轴, 发现在301-302 K α-甘氨酸有动态磁手性相变. α-甘氨酸晶体的每个晶胞包含四个分子, 属于具有中心对称结构的P21/n群, 电荷中心对称, 不导电. 在晶体中, 两层之间的N+(3)—H(8)…O(1)和N+(3)—H(8)…O(2)氢键, 沿b轴相互交叉反向配对排列. 在303 K, 用原子力显微镜可观察到α-甘氨酸晶体表面分子层与层间有规则的交叉螺旋排列. 结合中子衍射确定相变机制为, 在相变温度及外加磁场H=±1 T时, α-甘氨酸中的N+(3)—H(8),电子自旋反转为(↑). 因为N+(3)—H(8)…O(1)和N+(3)—H(8)…O(2)两反向氢键的强度和键角不同, 由动态磁手性和磁电效应, 产生电荷中心不对称, 导致304 K附近的热电相变.  相似文献   

11.
The poly(p-phenylene vinylene) derivative MEH-PPV is known to exist as two morphologically distinct species, referred to as red phase and blue phase. We show here that the transition from the blue phase to the red phase is a critical phenomenon that can be quantitatively described as a second order phase transition with a critical temperature T(c) of 204 K. The criticality is associated with the trade-off between the gain in the electronic stabilization energy when the π-system of a planarized chain can delocalize and the concomitant loss of entropy. We studied this transition by measuring the absorption and fluorescence in methyltetrahydrofuran (MeTHF) in two different concentrations as a function of temperature. The spectra were analyzed based upon the Kuhn exciton model to extract effective conjugation lengths. At room temperature, the chains have effective conjugation lengths of about five repeat units in the ground state (the blue phase), consistent with a disordered defect cylinder conformation. Upon cooling below the critical temperature T(c), the red phase with increased effective conjugation lengths of about 10 repeat units forms, implying a more extended and better ordered conformation. Whereas aggregation is required for the creation of the red phase, its electronic states have a predominant intrachain character.  相似文献   

12.
Polarised infrared transmission and Raman spectra of betaine ortho-phosphoric acid crystal in temperature ranges 13-393 and 13-300 K, respectively are reported and discussed in relation to phase transitions: antiferrodistortive at T(c1) = 365 K and antiferroelectric at T(c3) = 81 K. The spectra are consistent with unit cell doubling below T(c3). The participation of all hydrogen bonds apparent in the crystal in the antiferroelectric phase transition was shown. Quite large freedom of -N(CH(3))(3) groups reorientation in the antiferroelectric phase was detected. No changes were found in the transmission spectra taken in the vicinity of the antiferrodistortive phase transition temperature.  相似文献   

13.
Molecular dynamics simulations were used for a comprehensive study of the structural properties of monounsaturated POPC and POPE bilayers in the gel and liquid-crystalline state at a number of temperatures, ranging from 250 to 330 K. Though the chemical structures of POPC and POPE are largely similar (choline versus ethanolamine headgroup), their transformation processes from a gel to a liquid-crystalline state are contrasting. In the similarities, the lipid tails for both systems are tilted below the phase transition and become more random above the phase transition temperature. The average area per lipid and bilayer thickness were found less sensitive to phase transition changes as the unsaturated tails are able to buffer reordering of the bilayer structure, as observed from hysteresis loops in annealing simulations. For POPC, changes in the structural properties such as the lipid tail order parameter, hydrocarbon trans-gauche isomerization, lipid tail tilt-angle, and level of interdigitation identified a phase transition at about 270 K. For POPE, three temperature ranges were identified, in which the lower one (270-280 K) was associated with a pre-transition state and the higher (290-300 K) with the post-transition state. In the pre-transition state, there was a significant increase in the number of gauche arrangements formed along the lipid tails. Near the main transition (280-290 K), there was a lowering of the lipid order parameters and a disappearance of the tilted lipid arrangement. In the post-transition state, the carbon atoms along the lipid tails became less hindered as their density profiles showed uniform distributions. This study also demonstrates that atomistic simulations of current lipid force fields are capable of capturing the phase transition behavior of lipid bilayers, providing a rich set of molecular and structural information at and near the main transition state.  相似文献   

14.
Highly sensitive differential scanning microcalorimetry (DSC) has been used to investigate the phase transition properties of lipid vesicles prepared from 1,2-distearoyl-L-3-glyceryl-phosphatidylcholine (DSPC) in H(2)O and D(2)O. The data show that the response of pre-transition properties to D(2)O-->H(2)O substitution is stronger than the main transition properties. We find that there is a small increase in the phase transition temperature (DeltaT approximately 0.5 K) and in the co-operative unit in the main transition. The increase in enthalpy (DeltaH congruent with1 kJ(.)mol(-1)) and in transition temperature (DeltaT congruent with2 K) observed in the pre-transition is comparable with that observed in quite different processes and systems, i.e. melting of nucleic acids and proteins and gel formation. It is suggested that D(2)O-->H(2)O substitution affects the thermal transition in these systems in such a way that the contributions of enthalpy and entropy to structural reorganization of water in these processes is modified.  相似文献   

15.
A comparative analysis of phase transitions in diols with various chain lengths [(CH2)44(OH)2 and (CH2)22(OH)2] and changes in their absorption spectra with temperature have been investigated by DSC and FTIR. Analysis of the DSC data has led to the conclusion that the low-temperature phase transition of (CH2)22(OH)2 in a solid state (Ts-s = 367.1 K) is a phase transition of the first order, while the high-temperature phase transition (Tm = 376.3 K) is of the second order, i.e., a transition of the order-disorder type. Splitting of the IR absorption bands into doublets at 720-730 cm−1 and 1463-1473 cm−1 indicates that crystalline subcells in the lamellae of both diols are orthorhombic lattices with the parameters typical of hydrocarbons. IR spectra showed that at the phase transition temperature Ts-s transformation of an orthorhombic subcell into a hexagonal one occurs. This type of molecular chain packing remains the same up to the melting temperature Tm. In a (CH2)44(OH)2 diol, the ortho-hexagonal subcell transition occurs only at the melting temperature (390.0 K). The wide IR band in the region from 3000 cm−1 to 3600 cm−1 shows that end hydroxyl groups of diol molecules form, on the surfaces of lamellar crystals, long (polymer) regular sequences consisting of intermolecular hydrogen bonds.  相似文献   

16.
The crystal structure of diguanidinium hydrogenarsenate monohydrate has been found to belong to the P42(1)/c space group of the tetragonal system, with Z = 8, a = 17.114(2) A, c = 7.3500(10) A. In this complex, a network of hydrogen bonds links water molecules and hydrogenarsenate ions. The hydrogenarsenate ions form hydrogen-bonded chains along the crystallographic c-axis. Detailed vibrational studies have been carried out (FTIR and FT-Raman on powder samples, polarized FTIR microscope on a small single crystal at room temperature). The vibrational spectra are discussed in relation to the crystal structure. Calorimetric (DSC) studies have been performed, but no phase transition was found in the temperature range 100-350 K.  相似文献   

17.
Fluorescence emission spectra were recorded for isolated polymer chains of the polyfluorene copolymer, F8BT [poly(9,9-di-n-octylfluorene-alt-benzothiadiazole)], at 298 and 20 K for two molecular weights (chain lengths). For long-chain F8BT at 298 K, the observed distribution of single-molecule emission maxima G(Emax) is bimodal, with peaks at approximately 2.35 eV ("blue") and approximately 2.25 eV ("red"). Previously, the red forms have been assigned to polymer chains that possess intrachain contacts, which lowers the local singlet exciton energy. At approximately 20 K, G(Emax) collapses into a single broad distribution centered at approximately 2.3 eV for long-chain F8BT. However, this distribution can be further divided into a high-energy edge that is dominated by the "blue" form, while the remainder of the distribution is composed of the "red" form. Low-molecular-weight F8BT samples emit exclusively from the blue form, and no shift in peak maxima with low temperature was observed. A Franck-Condon analysis reveals a decrease in emitting state displacements between spectra measured at 298 and 20 K, suggesting that temperature-induced structural displacements are responsible for the change in the bimodal emission.  相似文献   

18.
The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.  相似文献   

19.
The pyndazine hexafluorophosphate[C4H5N2]+[PF6]-(1) undergoes a reversible phase transition around140 K,which was confirmed by the DSC measurement.Variable-temperature crystal structures determined at 293 K and 93 K show that the compound crystallizes in the same space group P21/c,indicating that 1 undergoes an iso-structural phase transition.As the temperature decreases,dielectric measurement of the title compound shows no significant change around the phase transition temperature.Classic hydrogen bonds are found between molecules at 293 K and 93 l< with similar packing arrangement.The most distinct difference between the low temperature and room temperature structures is the order-disorder transition of the hexafluorophosphate anion,which is probably the driving force of the phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号