首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction FangShaomeiandGuoBoling[1]consideredthefollowingtimeperiodicproblemof dampedcouplednonlinearwaveequations:ut f(u)x-αuxx βuxxx 2vvx=G1(u,v) h1(x),vt-γvxx 2(uv)x g(v)x=G2(u,v) h2(x),(1)whereα,β,γareconstants,andγ>0,β≠0.Undertheperiodicboundaryconditions,the authorsobtainedtheuniqueexistenceofstrongsolutionsfortheabovesystem.InthispaperweshallconsiderbifurcationbehaviorofthetravellingwavesolutionsofEq.(1)inthecaseGi(u,v)≡0,hi(u,v)≡0(i=1,2).Letξ=x-ct,u=u(x-ct),where cis…  相似文献   

2.
Travelling wave solutions for a second order wave equation of KdV type   总被引:1,自引:0,他引:1  
The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type.In different regions of the parametric space,sufficient conditions to guarantee the existence of solitary wave solutions,periodic wave solutions,kink and anti-kink wave solutions are given.All possible exact explicit parametric representations are obtained for these waves.  相似文献   

3.
冲击动力系统的鲁棒稳定性分析   总被引:3,自引:0,他引:3  
考虑冲击动力系统的k-p周期运动的鲁棒稳定性问题。首先,根据微分方程的解、冲击条件和衔接条件,应用迭代法给出了系统存在k-p周期运动的充分必要条件,并利用稳定性的等价原理,通过周期运动的扰动差分方程导出其稳定条件;然后,着重对含有不确定参数的冲击动力系统的k-p周期运动的稳定性进行了分析,得出了鲁棒稳定的充分条件,文末给出了用于阐明理论结果的算例。  相似文献   

4.
5.
Weiguo Rui 《Nonlinear dynamics》2014,76(2):1529-1542
It is well known that it is difficult to obtain exact solutions of some partial differential equations with highly nonlinear terms or high order terms because these kinds of equations are not integrable in usual conditions. In this paper, by using the integral bifurcation method and factoring technique, we studied a generalized Gardner equation which contains both highly nonlinear terms and high order terms, some exact traveling wave solutions such as non-smooth peakon solutions, smooth periodic solutions and hyperbolic function solutions to the considered equation are obtained. Moreover, we demonstrate the profiles of these exact traveling wave solutions and discuss their dynamic properties through numerical simulations.  相似文献   

6.
In this paper, we focus on the need to solve chaotic solutions of high-dimensional nonlinear dynamic systems of which the analytic solution is difficult to obtain. For this purpose, a Differential Control Method (DCM) is proposed based on the Mechanized Mathematics-Wu Elimination Method (WEM). By sampling, the computer time of the differential operator of the nonlinear differential equation can be substituted by the differential quotient of solving the variable time of the sample. The main emphasis of DCM is placed on substituting the differential quotient of a small neighborhood of the sample time of the computer system for the differential operator of the equations studied. The approximate analytical chaotic solutions of the nonlinear differential equations governing the high-dimensional dynamic system can be obtained by the method proposed. In order to increase the computational efficiency of the method proposed, a thermodynamics modeling method is used to decouple the variable and reduce the dimension of the system studied. The validity of the method proposed for obtaining approximate analytical chaotic solutions of the nonlinear differential equations is illustrated by the example of a turbo-generator system. This work is applied to solving a type of nonlinear system of which the dynamic behaviors can be described by nonlinear differential equations.  相似文献   

7.
In this paper, we study strongly nonlinear axisymmetric waves in a circular cylindrical rod composed of a compressible Mooney-Rivlin material. To consider the travelling wave solutions for the governing partial differential system, we first reduce it to a nonlinear ordinary differential equation. By using the bifurcation theory of planar dynamical systems, we show that the reduced system has seven periodic annuluses with different boundaries which depend on four parameters. We further consider the bifurcation behavior of the phase portraits for the reduced one-parameter vector fields when other three parameters are fixed. Corresponding to seven different periodic annuluses, we obtain seven types of travelling wave solutions, including solitary waves of radial contraction, solitary waves of radial expansion, solitary shock waves of radial contraction, solitary shock waves of radial expansion, periodic waves and two types of periodic shock waves. These are physically acceptable solutions by the governing partial differential system. The rigorous parameter conditions for the existence of these waves are given.  相似文献   

8.
By using the theory of planar dynamical systems to the ion acoustic plasma equations, we obtain the existence of the solutions of the smooth and non-smooth solitary waves and the uncountably infinite smooth and non-smooth periodic waves. Under the given parametric conditions, we present the sufficient conditions to guarantee the existence of the above solutions.  相似文献   

9.
Direct numerical integration can be used to find the periodicsolutions for the equations of motion of nonlinear vibrationsystems.The initial conditions are iterated so that theycoincide With the terminal conditions.The time interval ofthe integration(i.e.,the period)and certain parameters ofthe equations of motion can be included in the iterations.Theintegration method has a variable stoplength.This Sbooting method can produce periodic solutions witha shorter computex time.The only error occurs in the numeri-cal integration and it can therefore be estimated and madesmall enough.Using this method one can treat a variety ofvibration problems.such as free conservative.forced.para-meter-excited and self-sustained vibrations with one or se-veral degrees-of-freedom.Unstable solutions and those Whichare sensitive to parameter Changes can also be calculated.Thestability of the solutions is investigated based on the thecryof differential equations with periodic coefficients.The ex-trapolation method and the proc  相似文献   

10.
We establish sufficient conditions for the existence of periodic solutions of systems of linear and nonlinear functional differential equations with linear deviations of the argument and investigate their properties.  相似文献   

11.
扁球面网壳的混沌运动研究   总被引:3,自引:0,他引:3  
在圆形三向网架非线性动力学基本方程的基础上,用拟壳法给出了圆底扁球面三向网壳的非线性动力学基本方程.在固定边界条件下,引入了异于等厚度壳的无量纲量,对基本方程和边界条件进行无量纲化,通过Galerkin作用得到了一个含二次、三次的非线性动力学方程.为求Melnikov函数,对一类非线性动力系统的自由振动方程进行了求解,得到了此类问题的准确解.在无激励情况下,讨论了稳定性问题.在外激励情况下,通过求Melnikov函数,给出了可能发生混沌运动的条件.通过数字仿真绘出了平面相图,证实了混沌运动的存在.  相似文献   

12.
Using the method of dynamical systems for six nonlinear wave equations, the exact explicit parametric representations of the solitary cusp wave solutions and the periodic cusp wave solutions are given. These parametric representations follow that when travelling systems corresponding to these nonlinear wave equations has a singular straight line, under some parameter conditions, nonanalytic travelling wave solutions must appear. Dedicated to Professor Zhifen Zhang on the occasion of her 80th birthday  相似文献   

13.
This paper adds a negative velocity feedback to the dynamical system of twin-tail aircraft to suppress the vibration. The system is represented by two coupled second-order nonlinear differential equations having both quadratic and cubic nonlinearities. The system describes the vibration of an aircraft tail subjected to both multi-harmonic and multi-tuned excitations. The method of multiple time scale perturbation is adopted to solve the nonlinear differential equations and obtain approximate solutions up to the third order approximations. The stability of the proposed analytic solution near the simultaneous primary, combined and internal resonance is studied and its conditions are determined. The effect of different parameters on the steady state response of the vibrating system is studied and discussed by using frequency response equations. Some different resonance cases are investigated numerically  相似文献   

14.
We obtain sufficient conditions for the existence of periodic solutions of a system of nonlinear functional partial differential equations. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 2, pp. 154–158, April–June, 2005.  相似文献   

15.
Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is, active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differential equations having both quadratic and cubic nonlinearties. The system describes the vibration of an aircraft tail. The system is subjected to multi-external excitation forces. The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approximate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are studied numerically. Various resonance cases are investigated. A comparison is made with the available published work. The English text was polished by Keren Wang.  相似文献   

16.
罗祖军  徐健学 《力学季刊》2000,21(3):288-293
连续动力系统的非线性动力学研究,由于其应用的广泛性与问题的复杂性,近年来越来越受到重视。本文对一类生物流体力学中的连续系统-动脉局部狭窄时血液流动的分岔特性进行了研究,采用有限差分方法,将由偏微分方程组描述的边境动力系统约化为由常微分方程组描述的高维离散动力系统。求得了离散动力系统的平衡解并分析其稳定性,同时讨论了流场中变量空间分布的变化情况。求得了离散动力系统的前三个Lyapunov指数,以此作为系统是否发生混沌的判别条件。  相似文献   

17.
We consider the question of when delay systems, which are intrinsically infinite dimensional, can be represented by finite dimensional systems. Specifically, we give conditions for when all the information about the solutions of the delay system can be obtained from the solutions of a finite system of ordinary differential equations. For linear autonomous systems and linear systems with time-dependent input we give necessary and sufficient conditions and in the nonlinear case we give sufficient conditions. Most of our results for linear renewal and delay differential equations are known in different guises. The novelty lies in the approach which is tailored for applications to models of physiologically structured populations. Our results on linear systems with input and nonlinear systems are new.  相似文献   

18.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

19.
IntroductionFindingsufficientconditionsfornonoscillatoryofsolutionsisaproblemofgeneralinterestinthetheoryofordinaryanddelaydifferentialequations.Inthisworkweconsiderdds σ(s) dds r(s) dxds +q(s) dxdsβ +p(s)xα =f(s) ,(1)whereσ ,r,q,pandfarereal_valuedcontinuousfuncti…  相似文献   

20.
This paper addresses the derivation of finite element modelling for nonlinear dynamics of Cosserat rods with general deformation of flexure, extension, torsion, and shear. A deformed configuration of the Cosserat rod is described by the displacement vector of the deformed centroid curve and an orthogonal moving frame, rigidly attached to the cross-section of the rod. The position of the moving frame relative to the inertial frame is specified by the rotation matrix, parameterised by a rotational vector. The shape functions with up to third order nonlinear terms of generic nodal displacements are obtained by solving the nonlinear partial differential equations of motion in a quasi-static sense. Based on the Lagrangian constructed by the Cosserat kinetic energy and strain energy expressions, the principle of virtual work is employed to derive the ordinary differential equations of motion with third order nonlinear generic nodal displacements. A cantilever is presented as a simple example to illustrate the use of the formulation developed here to obtain the lower order nonlinear ordinary differential equations of motion of a given structure. The corresponding nonlinear dynamical responses of the structures are presented through numerical simulations using the MATLAB software. In addition, a MicroElectroMechanical System (MEMS) device is presented. The developed equations of motion have furthermore been implemented in a VHDL-AMS beam model. Together with available models of the other components, a netlist of the device is formed and simulated within an electrical circuit simulator. Simulation results are verified against Finite Element Analysis (FEA) results for this device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号