首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Palladium(II) halides react with triphenylphosphine sulphide or selenide, 1,1-methylenebis(diphenylphosphine sulphide or selenide) (MDPS or MDPSe), 1,3-trimethylene-bis-(diphenylphosphine selenide) (PDPSe) or tetramethyldiphosphine disulphide (TMDPS) forming complexes [PdBr2 · 2L], [2PdBr2 · 3L] (L=Ph3PS or Ph3PSe), [PdX2 · L] (X=Cl, L =PDPSe; X=Br, L=MDPS or MDPSe; X=Cl or Br, L=TMDPS) and [3PdBr2 · 2TMDPS]. Characterisation and stereochemical assignments have been made through elemental analyses, i.r., far i.r. and electronic spectra, magnetic susceptibility and molar conductance data and tga studies. Bidentate ligand complexes have higher thermal stability than the monodentate ligand complexes. Chelation or bridging modes of the bidentate ligands have been demonstrated.  相似文献   

2.
The hydrosilylation of mono- and di-alkenyl sulphides of the type RS(CH2)nCH=CH2 (R = C2H5, CH2=CH, CH2=CHCH2, C3H7, n = 0, 1 and 4) by triethyl- and triethoxy-silane, catalyzed by H2PtCl6·6 H2O, (Ph3P)3RhCl and (PhCN)2PdCl2·Ph3P, has been studied. The addition of hydrosilane to the double bond of alkenyl sulphide leads to a mixture of two isomeric monoadducts. The hydrosilane can cleave the C---S bond of the initial sulphides giving the corresponding derivatives of thiosilanes, X3SiS(CH2)nCH=CH2 (X = C2H5, C2H5O). Hydrosilylation of alkenyl sulphides is accompanied by some side reactions such as dehydrocondensation, reduction and polymerization. The effect of the catalyst nature, the structure of hydrosilane and alkenyl sulphide on the reaction route has been investigated.  相似文献   

3.
Summary Reactions of 1,1-methylene bis(diphenylphosphine oxide or sulphide) (dpmO2 or dpmS2) and 1-(diphenylphosphinoethyl)-2-diphenylphosphine sulphide (dpePS) with dihalodicarbonylruthenium(II) in EtOH gave 1:1 (L:M) complexes of stoichiometry: Ru(CO)2X2L2 (L = dpmO2, dpmS2 or dpePS; X = Cl or Br), which were characterized by elemental analysis and i.r. spectroscopy. The spectra reveal that: (a) the carbonyls occupy octahedral cis-positions, and (b) dpmS2 shows a higher coordination shift than does dpePS, probably due to the better Lewis basicity of the Ph2P moiety as compared to the Ph2P(S) moiety in the ligands. Cis-octahedral geometries are inferred from these studies.  相似文献   

4.
Rhodium(I) carbonyl complexes [Rh(CO)2ClL] where L = Ph3PO, Ph3PS and Ph3PSe, were synthesized and characterized by elemental analysis, i.r. and by 1H-, 13C- and 31P-n.m.r. spectroscopy. The vBD;(CO) band frequencies in the complexes follow the order: Ph3PO > Ph3PS > Ph3PSe, in keeping with the hard/soft nature of the interactions. The complexes undergo oxidative additions with electrophiles such as MeI, PhCH2Cl and I2 to give, e.g. [Rh(CO)(COMe)ClIL] which react with PPh3 to give trans-[Rh(CO)Cl(PPh3)2]. The catalytic activity of the [Rh(CO)2ClL] complexes in carbonylation of MeOH is higher than that of the well-known [Rh(CO)2I2] species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The following zinc(II), cadmium(II) and mercury(II) complexes of 2-methyl-benzoselenazole (L) have been prepared and studied by conductometric and i.r. methods: MLX2 (M ? Cd, Hg, X ? Cl, Br, I), ML1.5X2 (M ? Zn, X ? ClO4(4 H2O); M ? Hg, X ? NO3, ClO4), ML2X2 (M ? Zn, X ? Cl, Br, I, NO3; M ? Cd, X ? NO3, ClO4). The ligand is N-bonded. All the anions are coordinated.  相似文献   

6.
Hexamethylphosphoramide (HMPA) adducts of the type Ph3PbX·HMPA (X=Cl, Br, I, and NCS), Ph2PbX2·2HMPA (X=Cl, Br, and I), and Ph2PbX2·HMPA (X=Br and I), have been prepared and characterized by infrared, Raman, mass, and 31P nmr spectroscopy. Molecular weight and infrared solution data show that Ph3PbX·HMPA adducts dissociate in benzene, the degree of dissociation being NCS«Cl<Br<I. The thiocyanate adducts Ph3PbNCS·HMPA and Ph2Pb(NCS)2·2HMPA have v(CN) and v(CS) frequencies in the solid state, and v(CN) frequencies and absorptivities in benzene solution consistent with N-bonded thiocyanate in the solid state and in benzene solution. Vibrational frequencies are reported in the range 260 to 80 cm−1 and assignments are made for v(Pb-X), v(Pb-O0, and v(Pb-NCS) modes. The 1:1 adducts Ph3PbX·HMPA are monomeric and trigonal bipyramidal, whereas the 1:2 adducts Ph2PbX2·2HMPA are monomeric and cis-octahedral and the Ph2PbX2·HMPA appear to be halogen bridged polymers with lead six-coordinate. Coordination of HMPA causes a small upfield change in 31P chemnical shift values, and 2J(Pb-P) values vary with X in the order: NCS>I-Br>Cl for Ph3PbX·HMPA adducts. Corresponding tin and lead adducts are compared with respect to mode of adduct formation.  相似文献   

7.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

8.
Summary Complexes of stoichiometries M(Acbim)2X2·nH2O and M(Bzbim)2X2·nH2O (M = Co, Ni or Cu; Acbim = 2-acetylbenzimidazole, Bzbim = 2-benzoylbenzimidazole; X = Cl, Br, NO3 or ClO4; n = 0, 1 or 2) have been prepared and characterised by spectroscopic and physicochemical methods. The ligands coordinate through carbonyl oxygen and tertiary nitrogen.  相似文献   

9.
A series of aurocyanide and auricyanide complexes of phosphines, phosphine sulfides, and phosphine selenides were synthesized. These new complexes have the general formula [L n Au(CN) m ], where L could be Cy3P, (2-CN-Et)3P, Me3PS, Et3PS, Ph3PS, Me3PSe, or Ph3PSe. Auricyanide was reacted with L at 1?:?2 ratio. Products were characterized using elemental analysis, melting point, UV, IR, far-IR solution, and solid-state NMR spectroscopy. Phosphine ligands cause gold(III) reduction to gold(I); less redox tendency was found for phosphine sulfides and phosphine selenides. Tri-coordinate complexes [L2AuCN] were produced from phosphine ligands with gold-tetracyanide. IR and UV spectroscopic methods were used to identify gold oxidation state in the synthesized complexes.  相似文献   

10.
A new class of M(II)–Hg(II) (M=Cu(II), Co(II), Ni(II)) mixed-metal coordination polymers, Cu(2-pyrazinecarboxylate)2HgCl2 (4), [Co(2-pyrazinecarboxylate)2(HgCl2)2] · 0.61H2O (5) and [Ni(2-pyrazinecarboxylate)2(HgCl2)2] · 0.77H2O (6), have been prepared by self assembly of metal-containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2(M=Cu(II), Co(II), Ni(II)), with HgCl2. Compounds 46 were characterized fully by IR, elemental analysis and single crystal X-ray diffraction. Compound 4 crystallized in the monoclinic space group C2/c, with a=17.916(5) Å, b=7.223(2) Å, c=13.335(4) Å, β=128.726(3)°, V=1346.2(6) Å3, Z=4. It contains alternating Hg(II) and Cu(II) metal centers that are cross-linked by 2-pyrazinecarboxylate spacers and chlorine co-ligands to generate a unique three-dimensional Hg(II)–Cu(II) mixed metal framework. Compound 5 crystallized in the triclinic space group P , with a=6.3879(7) Å, b=6.6626(8) Å, c=13.2286(15) Å, α=96.339(2)°, β=91.590(2)°, γ=113.462(2)°, V=511.71(10) Å3, Z=1. Compound 6 also crystallized in the triclinic space group P , with a=6.3543(8) Å, b=6.6194(8) Å, c=13.2801(16) Å, α=96.449(2)°, β=92.263(2)°, γ=113.541(2)°, V=506.67(11) Å3, Z=1. Compounds 5 and 6 are isostructural and in the solid state the Hg(II)M(II)Hg(II) units are connected by Hg2Cl2 linkages to produce a novel M(II)–Hg(II) (M=Co(II), Ni(II)) zigzag mixed-metal chain, in which a new type of M–M′–M′–M array was observed. The metal containing building blocks, M(2-pyrazinecarboxylate)2 · (H2O)2 (M=Cu(II), Co(II), Ni(II)), exhibit different connectivities to HgCl2 depending on the metal cation contained within them.  相似文献   

11.
Synthesis and Properties of [Ph2(Carb)P]AlCl4 (Carb = 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) – a Stable Carbene Complex of Trivalent Phosphorus [1] 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene ( 7 , Carb) reacts with chlorodiphenylphosphane to give the cationic phosphane [Ph2(Carb)P]Cl ( 10 ) which is transferred to the more stable salt [Ph2(Carb)]AlCl4 ( 13 ) on treatment with AlCl3. The cationic phosphane selenide [Ph2(Carb)PSe]AlCl4 ( 14 ) is obtained from 13 and selenium. Spectroscopic and structural data indicate [Ph2(Carb)P]+ to be a cationic analogue of Ph3P. The X‐ray structure of 13 is reported.  相似文献   

12.
Hydrosilylation of allyl butyl ether and acetophenone with 1,1,3,3-tetramethyldisiloxane in the presence of [Pt(LL′)XY] and [Rh(Ph3P)3X] (L, L′ = cod, dmso, Py, Bn2S, Ph3P; X, y = Cl, SnCl3) was studied.  相似文献   

13.
Nine Hg(II) complexes, [Hg(DiphtS)2(L-L)](27) {where, HDiphtS = 4,5-diphenyl-1,2,4-triazole-3-thiol; L-L = bis(diphenylphosphino)ethane (dppe) (2); 1,3-bis(diphenylphosphino)propane (dppp)(3); 1,4-bis(diphenylphosphino)butane (dppb)(4); 1,1′-bis(diphenylphosphino)ferrocene (dppf)(5); 2,2′-bipyridine (Bipy)(6) and 1,10-phenanthroline (Phen)(7) } or [Hg(DiphtS)2(L)2] (89) {where L = triphenylphosphine (Ph3P) (8) and triphenylphosphine sulphide (Ph3PS) (9)}, have been prepared form the reaction of [Hg(DiphtS)2](1) with phosphine or amine as co-ligands. Then characterized by the IR, NMR (1H and 31P) spectroscopy, elemental analysis, molar conductivity. The results supported the monodentate behaviour of HDiphtS ligand in all complexes (19) in anion form through the sulfur atom. Complexes 1, 2 and 6 have been used as single source precursors for the preparation of ethylene-diamine capped HgS-nanoparticles. Powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM), have been used to characterize the HgS nanoparticles.  相似文献   

14.
Summary The synthesis and properties of cationic complexes of general formula [ML2{CH2(Ph2PE)2}]BF4, where M = PdII and RhII, L2 = 3-MeC3H4, {P(O)(OR)2}2H (R = Me, Et), COD, (CO)2, (CO)PPh3 and E = S, Se are described. The methylene proton of the coordinated phosphine sulphide or selenide ligands react with strong bases as BuLi in n-hexane or NaH in THF, to give neutral complexes of the type [ML2{CH(Ph2PE)2}], where M = PdII, RhI; L2 = 3-MeC3H4, COD and E = S, Se. The complexes have been characterized by elemental analyses, molar conductivities, i.r., 1H n.m.r. and 31P{1H} n.m.r. spectroscopy.  相似文献   

15.
The primary process in the reaction of hexaphenylditin with various substituted orthoquinones (Q) is shown to involve attack by the quinone at a phenyl ligand. The intermediate thus formed decomposes to yield Ph3Sn(SQ·), where S(Q·−) is the corresponding semiquinonate. Rearrangement of these species in solution gives rise to biradicals, while intramolecular electron transfer may lead to the formation and precipitation of Ph2Sn(CAT), where CAT2− is the corresponding substituted catecholate. The identification of these processes depends in part on electron paramagnetic resonance spectroscopy. The reaction of Ph3SnCl or Ph2SnCl2 with Na(TBSQ·) (TBSQ·−=3,5-di-tert-butyl-orthobenzosemiquinonate) results in the formation of Ph2Sn(TBSQ·), which can undergo redistribution and intramolecular electron transfer, so that the solution chemistry of these latter systems is similar to that of the products of the Sn2Ph6+Q reaction.  相似文献   

16.
New complexes of Co(II), Ni(II), and Cu(II) with 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (L) of the composition ML2(H2O)2(NO3)2 · nH2O (M = Co(II), n = 3; M = Ni(II), n = 0; M = Cu(II), n = 0) were synthesized and studied by photoelectron and IR spectroscopy, magnetochemistry, thermogravimetry, and X-ray powder diffraction analysis. The type of eff(T) relationship suggests that paramagnetic centers in the Co(II) chloride and Cu(II) nitrate and bromide complexes are involved in antiferromagnetic exchange interactions. The exchange energy values were estimated by the molecular field method.  相似文献   

17.
2,6-Dimethoxyphenyl derivatives of sulfur, selenium, and tellurium, such as ΦEEΦ, Φ2E, ΦSeH, [MeΦ2E]X (X=MeSO4, ClO4), Φ2EO · xH2O, [Φ2EOR]ClO4, [Φ2EOH]ClO4 (R=Me, Et), Me2SnCl2 · 2Φ2EO (E=S, Se) [Φ=2,6-(MeO)2C6H3; E=S, Se, Te] have been prepared, and their properties compared with common phenyl derivatives. The reaction rates of Φ2E with dimethyl sulfate and butyl bromide increased in the order E=S<Se<Te, which were compared with those of Ph3M and Φ3M, M=P>As>Sb. These reactivities are parallel with the electrochemical oxidation potentials reported for Ph2E and with the first ionization potentials reported for Ph3M. The rate of Φ2Te was faster than that of Ph3P and slightly faster than that of Φ3Sb. From the reactivity of [Φ2E-Me]+ salts with nucleophiles, the E+–Me bond strengths were estimated to increase in the order E=Se<S<Te. The reaction rates of Φ2EO with dimethyl sulfate increased in the order E=S<Se<Te, and the respective rate of Φ2EO was faster than that of Φ2E. The origins of these reactivities and bond strengths are discussed.  相似文献   

18.
The following zinc(II), cadmium(II) and mercury(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (L) have been prepared and investigated by conductometric,IR and Raman methods: MX2L2 (M = Zn, X = Cl, Br(CHCl3, I(CHCl3, CF3COO; M = Cd, X = Cl, Br CF3COO; M = Hg, X = Cl, CF3COO), Cd2I4L3, Hg3X6L2 (X = Cl, Br), Hg3X6L4(X = Br, I), MX2L4·6H2O (M = Zn, Cd, X = CIO4, BF4; M = Hg, X = CIO4. The ligand is principally bonded through the unprotonated nitrogen atom and in some complexes also through the carbonylic oxygen atom. The zinc halide complexes are tetrahedrally coordinated, the trifluoroacetate ion is coordinated as a monodentate ligand.  相似文献   

19.
This paper describes the preparation of the halogeno complexes, HgX2(o-R2AsC6H4CO2H) (X = Cl, Br, I, and R = Et; X = Br, I, and R-C6H11) and the carboxylate complexes, M(o-R2-AsC6H4CO2)2nL(M = Cd, R = Et, C6H11 and n = O; M = Zn; R = Et; nL = H2O; M = Zn, R = C6H11, nL = 3H2O; M = Hg, R = p-tolyl, nL = 2H2O; M = Hg, R = Me, Ph; C6H11 and nL = EtOH). The structures already reported for the halogeno complexes with R = Ph, Me, p-tolyl and X = Cl, Br, I, have been revised on the basis of detailed scrutiny of the IR spectral data and all these complexes have been divided into four structural types out of which three retain the acid dimer unit of the free ligand. In the carboxylate complexes the lowering of νs, CO2 band and the marginal change in the νas CO2 band with respect to those of the corresponding ligand sodium salts have been attributed to the existence of a novel resonating chelating system with the possibility of having a ring current.  相似文献   

20.
The syntheses of [Hg(X)OAc] (OAc=acetate; X=CN, Cl, Br, I, SCN) are reported, and the crystal structure of the cyano complex has been determined. The asymmetric unit contains two [Hg(CN)OAc] molecules which show almost linear C–Hg–O bonding (Hg–C=2.019(13), 2.016(11) Å; Hg–O=2.067(9), 2.058(8) Å; C–Hg–O=176.0(4), 172.3(5)°), with only one of the two acetate oxygen atoms bound directly to the mercury atom. Secondary HgO and HgN contacts in the range 2.6–2.8 Å are about 0.2 Å shorter than the secondary HgO contacts in the corresponding X=Ph complex. The ν(HgX) and ν(HgO) modes have been assigned in the IR and Raman spectra of [Hg(X)OAc] (X=CN, Cl, Br, I, SCN); these spectra show that the complexes have structures with essentially linear O–Hg–X bonding, similar to that of the cyanide. Solid-state 199Hg MAS NMR spectra have been recorded for HgX2 (X=CN, Cl) and [Hg(X)OAc] (X=Me, Ph, CN, Cl, SCN), and spinning sideband analysis has been used to determine the 199Hg shielding anisotropy and asymmetry parameters Δσ and η. A semi-empirical method for the calculation of the local paramagnetic contribution to the shielding is given, and a linear relationship between Δσ and the isotropic shielding σiso which is predicted by this model for linear HgXY species is found to be obeyed reasonably well by the experimental data for HgX2 and [Hg(X)OAc]. The same method is used to analyse the effects of secondary bonding on the 199Hg shielding parameters. The 13C MAS NMR spectrum of [Hg(SCN)OAc] shows 2J(199Hg13C) and 3J(199Hg13C) coupling to the acetate carbon atoms, with magnitudes similar to those found previously for Hg(OAc)2. The CN carbon signals in Hg(CN)2 and [Hg(CN)OAc] are split into 2:1 doublets due to residual dipolar coupling to the quadrupolar 14N nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号