首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-shaped host molecule 4,4-bis(4'-hydroxyphenyl)cyclohexanone (1) has an equatorial phenol group and a cyclohexanone group along the arms and an axial phenol ring as the stem. The equatorial phenyl ring adopts a "shut" or "open" conformation, like a windowpane, depending on the size of the guest (phenol or o/m-cresol), for the rectangular voids of the hydrogen-bonded ladder host framework. The adaptable cavity of host 1 expands to 11x15-18 A through the inclusion of water with the larger cresol and halophenol guests (o-cresol, m-cresol, o-chlorophenol, and m-bromophenol) compared with a size of 10x13 A for phenol and aniline inclusion. The ladder host framework of 1 is chiral (P2(1)) with phenol, whereas the inclusion of isosteric o- and m-fluorophenol results in a novel polar brick-wall assembly (7x11 A voids) as a result of auxiliary C-H...F interactions. The conformational flexibility of strong O-H...O hydrogen-bonding groups (host 1, phenol guest), the role of guest size (phenol versus cresol), and weak but specific intermolecular interactions (herringbone T-motif, C-H...F interactions) drive the crystallization of T-host 1 towards 1D ladder and 2D brick-wall structures, that is, supramolecular isomerism. Host 1 exhibits selectivity for the inclusion of aniline in preference to phenol as confirmed by X-ray diffraction, 1H NMR spectroscopy, and thermogravimetry-infrared (TG-IR) analysis. The T(onset) value (140 degrees C) of aniline in the TGA is higher than those of phenol and the higher-boiling cresol guests (T(onset)=90-110 degrees C) because the former structure has more O-H...N/N-H...O hydrogen bonds than the clathrate of 1 with phenol which has O-H...O hydrogen bonds. Guest-binding selectivity for same-sized phenol/aniline molecules as a result of differences in hydrogen-bonding motifs is a notable property of host 1. Host-guest clathrates of 1 provide an example of spontaneous chirality evolution during crystallization and a two-in-one host-guest crystal (phenol and aniline), and show how weak C-H...F interactions (o- and m-fluorophenol) can change the molecular arrangement in strongly hydrogen-bonded crystal structures.  相似文献   

2.
3.
4.
5.
Two new supramolecular complexes [Hg(6)As(4)](CrBr(6))Br (1) and [Hg(6)As(4)](FeBr(6))Hg(0.6) (2) have been prepared by the standard ampoule technique and their crystal structures determined. Both crystallize in the cubic space group Pa$\bar 3$ with the unit cell parameter a=12.275(1) (1) and 12.332(1) A (2), and Z=4. Their structures consist of bicompartmental, three-dimensional [Hg(6)As(4)](4+) frameworks with cavities of two different sizes occupied by guest anions of different type. The bigger cavities are filled with the octahedral MBr(6) (n-) ions (M=Cr or Fe; n=3 or 4), whereas the smaller cavities trap either Br- ions (1) or Hg(0) (2). The analysis of the host-guest contacts has allowed a classification of the octahedral guests as coordinated and the monatomic guests as clathrated. Magnetic measurements and ESR spectroscopy data have given information about the interaction between the host and guests. Band structure calculations (HF and hybrid DFT level) indicate that both 1 and 2 are non-metallic, with a band gap of approximately 1.5 eV (B3LYP), and that the interaction between the host and guests is of predominantly electrostatic character. It is shown that though the electrostatic host-guest interaction is weak it plays an important role in assembling the perfectly ordered supramolecular architectures.  相似文献   

6.
Classical molecular dynamics simulations were used to study p-tert-butylcalix[4]arene inclusion compounds with xenon, nitrogen, hydrogen, methane, and sulfur dioxide guest molecules. The calixarene units were taken to be rigid and the intermolecular molecular interactions were modeled as a sum of the van der Waals interactions with parameters from the AMBER force field and electrostatic interactions. Simulations of the high-density alpha phase and low-density beta0 phase of p-tert-butylcalix[4]arene were used to test the force field. The predicted densities of the two phases were found to agree with experimental measurements at 173 K to within 5 %. Simulations were performed with guests placed inside the calixarene cages of the beta0 phase. Guest-host ratios of 1:1 to 1:4 were considered. Changes in the unit-cell volume and density of the phases with the addition of guest molecules and the inclusion energies for the guests were determined. Finally, the dynamics of the guest motion inside the cages were characterized by determining the root-mean-square displacements and velocity autocorrelation functions of the xenon and nitrogen guests.  相似文献   

7.
8.
9.
10.
The binding interactions in aqueous solution between the dicationic guest diquat (DQ(2+)) and the cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) hosts were investigated by (1)H NMR, UV/Vis, and fluorescence spectroscopy; mass spectrometry; single-crystal X-ray diffraction; and electrochemical techniques. The binding data were compared with previously reported results for the related paraquat guest (PQ(2+)). DQ(2+) was found to bind poorly (K=350 m(-1)) inside CB7 and more effectively (K=4.8 x 10(4) m(-1)) inside CB8. One-electron reduction led to increased binding affinity with both hosts (K(r)=1 x 10(4) m(-1) with CB7 and K(r)=6 x 10(5) m(-1) for CB8). While (1)H NMR spectroscopic data revealed that DQ(2+) is not fully included by CB7, the crystal structure of the CB8DQ(2+) complex-obtained from single-crystal X-ray diffraction-clearly establishes its inclusion nature. Overall, both diquat and its one-electron reduced radical cation are bound more effectively by CB8 than by CB7. In contrast to this, paraquat exhibits selectivity for CB7, but its radical cation forms a highly stable dimer inside CB8. These differences highlight the pronounced sensitivity of cucurbit[n]uril hosts to guest features such as charge, charge distribution and shape.  相似文献   

11.
The assembly of C-methyl resorcinarene into a tubular supramolecular solid-state structure, its thermal stability, and its hosting properties are reported. Careful control of the crystallisation conditions of C-methyl resorcinarene and 1,4-dimethyl-1,4-diazoniabicyclo[2.2.2]octane (1,4-dimethyl DABCO) dibromide leads to a formation of two crystallographically different, but structurally very similar, solid-state nanotube structures. These structures undergo a remarkable variety of supramolecular interactions, which lead to the formation of 0.5 nm diameter nonpolar tubes through the crystal lattice. The formation of these tubes is templated by suitably sized small alcohols, namely, n-propanol, 2-propanol, or n-butanol. The self-assembly involves close pi...pi interactions between the adjacent resorcinarenes, and C--H...pi and cation...pi interactions between the resorcinarenes and the guest 1,4-dimethyl DABCO dications. The crystals of these supramolecular tube structures are thermally very stable and the included solvent alcohol can be removed from the tubes without breaking the single-crystalline structure of the assembly. After removal of the solvent molecules the tubes can be filled with other small, less polar solvent molecules such as dichloromethane.  相似文献   

12.
13.
14.
15.
Supramolecular chemistry is a field of scientific exploration that probes the relationship between molecular structure and function. It is the chemistry of the noncovalent bond, which forms the basis of highly specific recognition, transport, and regulation events that actuate biological processes. The classic design principles of supramolecular chemistry include strong, directional interactions like hydrogen bonding, halogen bonding, and cation-π complexation, as well as less directional forces like ion pairing, π-π, solvophobic, and van der Waals potentials. In recent years, the anion-π interaction (an attractive force between an electron-deficient aromatic π system and an anion) has been recognized as a hitherto unexplored noncovalent bond, the nature of which has been interpreted through both experimental and theoretical investigations. The design of selective anion receptors and channels based on this interaction represent important advances in the field of supramolecular chemistry. The objectives of this Review are 1) to discuss current thinking on the nature of this interaction, 2) to survey key experimental work in which anion-π bonding is demonstrated, and 3) to provide insights into the directional nature of anion-π contact in X-ray crystal structures.  相似文献   

16.
A set of four hybrid host-guest complexes based on the inorganic crown ether analogue [H12W36O120]12- ({W36}) have been isolated and characterised. The cluster anion features a central rigid binding site made up of six terminal oxygen ligands and this motif allows the selective binding of a range of alkali and alkali-earth-metal cations. Here, the binding site was utilised to functionalise the metal oxide-based cavity by complexing a range of protonated primary amines within the recognition site. As a result, a set of four hybrid organic-inorganic host-guest complexes were obtained whereby the interactions are highly directed specifically within this cavity. The guest cations in these molecular assemblies range from the aromatic 2-phenethylamine (1) and 4-phenylbutylamine (2) to the bifunctional aromatic p-xylylene diamine (3) and the aliphatic, bifunctional 1,6-diaminohexane (4). Compounds 1-4 were structurally characterised by single-crystal X-ray diffraction, elemental analysis, flame atomic absorption spectroscopy, FTIR and bond valence sum calculations. This comparative study focuses on the supramolecular effects of the amine guest cations and investigates their structure-directing effects on the framework arrangement arising by locking the protonated amines within the cavity of the {W36} cluster. It was shown that parts of the organic guest cation protrude from the central binding cavity and the nature of this protruding organic "tail" directs the solid-state arrangement of compounds 1-4. Guest cations with a hydrophobic phenyl tail result in an antiparallel assembly of {W36} complexes arranged in a series of pillared layers. As a consequence, no direct supramolecular interactions between {W36} clusters are observed. In contrast, bifunctional guest cations with a secondary amino binding site act as molecular connectors and directly link two cluster units thus locking the supramolecular assembly in a tilted arrangement. This direct linking of {W36} anions results in the formation of an infinite supramolecular scaffold.  相似文献   

17.
Control over the conformational flexibility of p-sulfonatocalix[6]arene in the solid state is possible in the presence of varied stoichiometric amounts of [18]crown-6 and selected lanthanide(III) chlorides. Complexes 1 and 2 have the calixarene in the elusive up-up double cone conformation, whilst complex 3 has the calixarene in the centrosymmetric up-down double partial cone conformation, whereby it acts as a divergent receptor. Complex 1 has a double molecular capsule arrangement which is composed of two p-sulfonatocalix[6]arenes shrouding two [18]crown-6 molecules, also with both coordinated and homoleptic aquated lanthanide ions around the hydrophilic sulfonate rims of the calixarenes. Complex 2 has a ferris wheel arrangement with one lanthanide metal centre coordinated to a sulfonate group and another coordinated to the crown ether whilst tethered to a sulfonate group of the calixarene. Complex 3 forms from a solution with large excess of [18]crown-6, and possesses a crown ether molecule in each of the partial cones and has homoleptic aquated lanthanide ions involved in a complicated hydrogen-bonding regime within the extended structure.  相似文献   

18.
Custom-made macrocyclic receptors for fullerenes are proving a valuable alternative to achieve the affinity and selectivity required to meet challenges such as the selective extraction of higher fullerenes, their chiral resolution, or the self-assembly of functional molecular materials. In this Minireview, we highlight some of the important breakthroughs that this class of fullerene hosts has already produced.  相似文献   

19.
20.
Guest-dependent flexible coordination networks are formed from 1,4-bis(4-pyridylmethyl)tetrafluorobenzene (bpf), 4,4'-bis(4-pyridylmethyl)octafluorobiphenyl (bpfb), 2,6-bis(4-pyridylmethyl)hexafluoronaphthalene (2,6-bpfn), and 2,7-bis(4-pyridylmethyl)hexafluoronaphthalene (2,7-bpfn) with Cd(NO3)2 in the presence of various organic compounds. The reaction of bpf affords one-dimensional cyclic chains, two-dimensional rhombus grid sheets, and three-dimensional diamond frameworks with threefold interpenetration. The reaction of bpfb mainly affords two-dimensional rhombus grid sheets with twofold parallel interpenetration. The reaction of 2,6-bpfn affords a one-dimensional ladder and two-dimensional rhombus grid, twisted grid, and herringbone sheets. The reaction of 2,7-bpfn affords two-dimensional rhombus grid sheets and grid sheets with dumbbell-shaped cavities. This diversity of network topologies is induced by interactions between the guest molecules and the flexible ligand frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号