首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吕功煊 《分子催化》2013,27(3):218-226
以表面活性剂修饰的MCM-41为载体,采用浸渍法制备了负载离子液体[NH2p-mim][PF6]的二氧化碳吸附剂,考察了表面活性剂对离子液体在MCM-41上分散的影响以及所导致的CO2吸附性能的变化.利用红外光谱(FT-IR),X-射线衍射(XRD),高分辨透射电子显微镜(HRTEM),热重分析(TG)技术对所合成的负载型离子液体吸附剂进行了表征研究,并与其吸附CO2的性能变化、离子液体与表面活性剂相互作用方式等因素进行了关联.结果表明:MCM-41负载离子液体后对CO2的吸附性能略有提高,而经表面活性剂修饰的MCM-41负载离子液体后,对CO2的吸附容量较载体本身提高了2.5倍.这一方面是因为表面活性剂胶束改善了MCM-41上离子液体的分散性,另一方面是表面活性剂胶束对离子液体分子上电荷分布的影响,导致离子液体内部阴阳离子之间的相互作用减弱,从而引起离子液体中-NH2上N原子电子云密度增大,使其与CO2作用更容易.CO2在经表面活性剂修饰后的MCM-41负载离子液体[NH2p-mim][PF6]吸附剂上的吸附受扩散控制,其吸附-脱附CO2所需能量较小,经过5次吸附-脱附循环后,其吸附性能仍保持稳定.热重分析结果表明,经表面活性剂修饰后的MCM-41负载离子液体吸附剂在100℃下氮气气氛再生时不会发生性质改变.  相似文献   

2.
As a function of temperature in aqueous solutions, the adsorption and aggregation of N,N’-bis (tetradecyl dimethyl)-1,2-dibromide-ethanediyl ammonium salt (GS14-2-14) and N,N’-bis (hexadecyl dimethyl)-1,2-dibromide-ethanediyl ammonium salt (GS16-2-16), were researched with drop-volume technique and conductometry, respectively. The results of surface tension measurements, which were analyzed by originally developed thermodynamic equations, illustrate that GS14-2-14 has a better surface activity and arranges more tightly in the adsorbed film than GS16-2-16. The data of conductivity were used to find critical micelle concentration (cmc) and counterion binding degree of micelle (β). Thermodynamic parameters of micellization were also obtained from the temperature dependence of cmc values. From the study, it is discovered that the micellization process is spontaneous and exothermic in nature and it is mainly driven by entropy.  相似文献   

3.
In the past, few theoretical attempts have been made to describe quantitatively the adsorption of ionic surfactants at liquid interfaces. Well-known adsorption isotherms due to Frumkin or Hill–de Boer cannot respond to the specific electrostatic and geometric properties of the surfactant molecules. Our approach is based on a combination of the Gouy–Chapman theory with a modified Frumkin isotherm. The modification implies that the system is free to choose an optimal head group area and an optimal arrangement of the surfactant molecules in the interface as a function of bulk concentration. Interaction energies between neighbouring adsorbed surfactant molecules and between surfactant and water molecules are taken into consideration. The minimum of the Gibbs free energy of the system is equivalent to a minimal interfacial tension. Thus, the thermodynamically stable isotherm can be obtained as the lower envelope of the family of σ versus ln c isotherms resulting from different choices of the model parameters, including the area per molecule. According to the Gibbs equation, the Γ versus ln c adsorption isotherm is obtained as the derivative of this envelope. By variation of the model parameters, the envelope of the calculated adsorption isotherms can be fitted to experimental data of the interfacial tension versus bulk concentration. A computer program is used to calculate the σ versus c and the Γ versus ln c curves as well as to fit the parameters. Received: 28 October 1999/Accepted: 8 February 2000  相似文献   

4.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

5.
Electrophoretic mobility of oil droplets of micron sizes in PBS and ionic surfactant solutions was measured in this paper. The experimental results show that, in addition to the applied electric field, the speed and the direction of electrophoretic motion of oil droplets depend on the surfactant concentration and on if the droplet is in negatively charged SDS solutions or in positively charged hexadecyltrimethylammonium bromide (CTAB) solutions. The absolute value of the electrophoretic mobility increases with increased surfactant concentration before the surfactant concentration reaches to the CMC. It was also found that there are two vortices around the oil droplet under the applied electric field. The size of the vortices changes with the surfactant and with the electric field. The vortices around the droplet directly affect the drag of the flow field to the droplet motion and should be considered in the studies of electrophoretic mobility of oil droplets. The existence of the vortices will also influence the determination and the interpretation of the zeta potential of the oil droplets based on the measured mobility data.  相似文献   

6.
Solid polymer electrolytes are a promising alternative to widely used liquid carbonate electrolytes to deliver next-generation lithium-ion batteries with improved safety. However, the limited ionic conductivity and high interfacial resistance with electrodes limit their widespread use. This review aims to give an overview of the recent research on performance aspects and strategies of solid polymer electrolytes, including ionic conductivity, lithium transference number, design flexibility, scale-up, and integration of ionic liquids with a focus on safety.  相似文献   

7.
The research reported in this paper demonstrates that the capacity of cotton fibres to adsorb cationic surfactants as well as the rate of the adsorption process can be increased by adsorbing carboxymethyl cellulose (CMC) onto the fibre surfaces; in addition, the adsorption can be restricted to the fibre surface. CMC was deposited by means of adsorption from an aqueous solution. The adsorption of N-cetylpyridinium chloride (CPC) from an aqueous solution onto the CMC-modified fibres was measured using UV-spectrometric determination of the surfactant concentration in the solution. Adsorption onto the cotton fibres was studied in a weakly basic environment (pH 8.5) where cotton fibres are negatively charged and the CPC ion is positively charged. Modification of the fibres by adsorption of CMC introduces new carboxyl groups onto the fibre surfaces, thereby increasing the adsorption capacity of the fibres for CPC. The initial rate of adsorption of CPC increased proportionally with the amount of charge; however, this rate slowed down at high degrees of coverage on fibres with a high charge. The adsorption of cationic surfactant to the anionic surface groups was stoichiometric, with no indication of multilayer or admicelle formation. It was evident that the acidic group content of the fibres was the primary factor determining cationic surfactant adsorption to these fibres.  相似文献   

8.
9.
The kinetics of adsorption from micellar surfactant solutions is considered theoretically from a uniform point of view. Three boundary value problems for the adsorption on flat and on spherical interface are solved analytically by means of the method of the Green functions. In this way the bulk concentration and the adsorption of surfactant monomers are expressed as functions of time. The contribution of the micelles (surfactant aggregates) to the diffusion of the monomers is accounted for as pseudo-first order reaction. The adsorption from surfactant solutions without micelles turns out to be the particular case of the problems considered here. Being general in form, the derived equations can be applied also to other practical problems in heterogeneous chemical kinetics, adsorption of gases, heat transfer, etc.  相似文献   

10.
The adsorption isotherms, adsorption kinetics and surface rheological properties of β-lactoglobulin, β-casein, in the absence and presence of Tween 20 were measured. To study the adsorption process (isotherms and kinetics) at the water–air interface the pendant drop technique (axial drop shape analysis, ADSA), and ring tensiometry were used. The surface shear rheological parameters were measured with a torsion pendulum set-up. Also, data of the equilibrium film thickness and surface diffusion coefficients obtained from fluorescence recovery after photobleaching (FRAP) measurements are used to understand the competitive adsorption mechanism. The adsorption process and shear rheological behaviour of the studied systems show a rather complex behaviour which depends most of all on the system's composition. At high protein or surfactant content the behaviour is controlled by the main component while for the more mixed systems the adsorption process is complex and consists of partial adsorption, surfactant–protein interaction and protein rearrangement as a function of surface coverage. The results obtained illustrate that all these processes must be taken into account in future new theoretical models to be derived for such systems.  相似文献   

11.
A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r2 = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4–117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products.  相似文献   

12.
In this paper, how chitosan hydrogel beads were modified by anionic surfactants (SDS, SDOS, SDBS, AOT, and DTM-12) and then used for the adsorption and removal of an anionic dye (congo red) from aqueous solutions were described. The effect of surfactant concentration, surfactant ionic head-group, and surfactant hydrophobic tail were investigated in detail. The result revealed the modified CS beads all had the obviously higher adsorption capacity than CS beads. Compared to the ionic head-group, the hydrophobic tail of the surfactant plays more important role in the adsorption, and a high adsorption capacity was observed for CS/AOT beads and CS/DTM-12 beads (both with two hydrophobic tails). The Sips isotherm model showed a good fit with the equilibrium experimental data, and the values of the heterogeneity factor (n) indicated heterogeneous adsorption. The adsorption kinetics analysis indicated that the pseudo-second-order rate model could better describe the adsorption process than the pseudo-first-order rate model.  相似文献   

13.
In this work, the responses of a Y-cut langasite crystal resonator (LCR) in liquid phases were investigated by an impedance analysis method. The resonant frequency (fS) of the LCR decreases with increasing mass loading on the active surface of the resonator. The LCR can be operated at the resonant frequency that is down to about 60% of the fundamental frequency (f0) under foreign mass loading. The frequency-mass coefficient of the Y-cut LCR is theoretically derived to be −1.282 × 10−6, which is supported by the experimental results. The resonant frequency of the LCR decreases linearly while its motional resistance (Rm) increases linearly with increasing (ρη)1/2, where η and ρ are the viscosity and density of the liquid phase, respectively. The slopes of the plots of fS versus (ρη)1/2 and Rm versus (ρη)1/2 are related to the region of (ρη)1/2 because of the influence of surface roughness of the LCR. The changes in viscodensity of a room temperature ionic liquid (RTIL), 1-octyl-3-methylimidazolium bromide ([C8MIM][Br]), were investigated in acetone vapor adsorption and ascending temperature processes by the LCR. The adsorption of acetone into [C8MIM][Br] causes a significantly drop in viscosity of the [C8MIM][Br] film, which induces an increase in fS and a decrease in Rm for the RTIL modified LCR. When the thickness of [C8MIM][Br] film is less than the decay distance of the thickness-shear wave, a mass effect model is observed in the early adsorption process. Based on the responses of the LCR, the viscodensity of the [C8MIM][Br] film as well as the adsorbed amounts of acetone into film were monitored in real time during the adsorption or desorption processes.  相似文献   

14.
The interfacial behavior of β-casein and BSA solutions have been investigated in the presence of imidazolium-based ionic liquid surfactant ([C14mim]Br) at the decane/water interface with the oscillating the drop and interfacial tension relaxation measurements. Both the electrostatic and the hydrophobic interaction between protein and [C14mim]Br played crucial roles as [C14mim]Br concentration increases. Furthermore, it was found that the dilational rheology parameters provided information of the adsorbed layers structure, and the dynamics properties of the adsorbed layers depend on the bulk [C14mim]Br concentration. Moreover, with the concentration of [C14mim]Br increasing, β-casein in the interfacial layer was subject to conformational changes where it gave space to [C14mim]Br molecules in the form of co-adsorb; for BSA/[C14mim]Br solutions, the globule protein BSA deformed and then co-adsorb with [C14mim]Br molecules at the decane/water interface. These results will contribute to elucidation of the influence of the surfactant on the different structure proteins and the wide applications of protein/surfactant systems in practice.  相似文献   

15.
This review covers the effects of hydrophobic counterions on the phase behavior of ionic surfactants and the properties of the phases. Mixing hydrophobic counterions with ionic surfactant micellar solutions may initiate the micellar growth and transform the micellar microstructure into different morphologies. This behavior may also be achieved by mixing ionic surfactants with hydrophilic counterions, although higher counterionic concentrations are then required. First, the role of hydrophilic and hydrophobic counterions in regards to micelle growth is discussed. Second, the effect of the hydrophobic counterion on the self-assembly of cationic and anionic surfactants and their viscoelastic behavior are presented. Third, the relationships between geometry, hydrophobicity and their consequences on micellar growth for different hydrophobic counterions are reviewed. Forth, the influence of hydrophobic counterion substituents (substitution pattern) on the phase behavior is discussed. Some results we previously obtained for different isomers of hydroxy naphthaoic acids and the cationic surfactant cetyltrimethylammonium hydroxide are included. With these systems the effect that the hydrophobic counterion microenvironment has on the phase behavior, rheological behavior and the micellar microstructure is discussed. The results from other research groups are also discussed.  相似文献   

16.
裴秀  陈洪卓  李亚明  罗刚 《化学通报》2024,87(3):349-354
茜素红(Alizarin Red,AR)作为蒽醌类染料中的重要组成,由于其具有优异的特性,在染料和酸碱指示剂等方面被广泛使用。但是AR具有毒性高、结构复杂以及化学需氧量(COD)值大等原因,使其成为了主要污染物之一,去除水体中的茜素红染料污染物已经成为了目前亟待解决的问题。共价有机框架材料作为一种新型的多孔有机材料,由于其具有比表面积大,孔径均一和可设计的独特优势,已经广泛应用吸附和分离等方面。因此,以三醛基间苯三酚和溴化乙锭为构筑单元,通过水热的方法合成一种二维离子型共价有机框架材料(TpEB-COF)。对制备的TpEB-COF进行相关表征,包括X射线衍射仪(XRD),扫描电镜(SEM)和能量色散谱仪(EDS)等。然后将制备的TpEB-COF作为固体吸附剂,将其应用对水中AR的吸附,研究了不同吸附时间和不同pH值对吸附过程的影响。实验结果证明制备的离子型共价有机框架材料具有良好的晶型结构。同时,对实验数据分析表明,离子型共价有机框架材料对于茜素红的吸附符合准二级动力学方程和Langmuir吸附模型,吸附效率为82.8%,最大吸附量为828 mg g-1。本研究不仅为共价有机框架材料的设计和合成奠定坚实的基础,而且拓展了离子型共价有机框架材料的应用范围,促进共价有机框架材料的发展。  相似文献   

17.
Results are reported for a systematic study on retention of three selected herbicides, in single solute or multi-solute feed-waters, by three commercial NF/ULPRO membranes, using stirred cells in the dead-end filtration mode. The effect of ionic environment on the retention of herbicides is also examined by controlling sodium and calcium concentration. The results are interpreted on the basis of the characteristic properties of herbicides and membranes used. In general, size exclusion seems to be the dominant mechanism for retention by NF/ULPRO membranes, especially in the case of membranes with a pore size similar to that of herbicide molecules. Tight and thus high-desalting membranes exhibit the best retention performance. On the other hand, the retention efficiency of relatively loose nanofiltration membranes also appears to be significantly influenced by adsorption of herbicides on the membrane. Filtration of feed-waters with more than one herbicide present results in different retentions (usually reduced) compared to those determined in single compound solutions. This is attributed to the competition between the herbicides for adsorption sites, which is directly related to membrane surface properties. Filtration experiments with saline solutions, mimicking real conditions (e.g. surface water), reveal the significant effect of divalent cations on herbicide retention, which, depending on the membrane type, can be either positive or negative. However, the effect of ionic strength, due to monovalent ions (NaCl), on herbicides retention appears to be rather minor.  相似文献   

18.
Two adsorption models for ionic surfactants based on the Frumkin equation are examined to describe the measured surface tension isotherms of a series of alkali dodecylsulphates. In the model A the number of optimization parameters is reduced by additional modeling. The adsorption of counter-ions in the Stern layer is described via forming of ionic bonds, which free energy is significantly higher than that obtained by the model B. Concurrently the lateral interactions on the water/air interface are also found to be orders of magnitude stronger. Thus, the values of the adsorption parameters are more realistic, which supports the model A as a more relevant one.  相似文献   

19.
Time-resolved fluorescence quenching, self-diffusion measurements and calorimetric investigations have been used in order to investigate the effect of salt on aggregation in aqueous solutions and the adsorption onto silica gel of the zwitterionic surfactant N-dodecyl betaine (NDB).

The micelle aggregation number of NDB stays constant when the NDB or salt concentration increases but decreases with an increase of temperature. Evidence is presented for the binding of cations and anions to micellar aggregates. The degree of binding has been obtained for Na+, Ca2+ and Cl ions; it is always larger for the anion.

Enthalpies of micellization were obtained directly from calorimetric curves of NDB in dilution experiments. The observed decrease of the endothermic enthalpies of micellization with increasing temperature or salinity is attributed to a structural change in the water molecules around the alkyl chain of the free monomers.

The adsorption isotherms of NDB onto silica gel depend very little on temperature, and a plateau is reached near the CMC. At saturation, the adsorbed amount of NDB depends on the salt and follows the sequence NDB < (NDB + NaCl) < (NDB + CaCl2).

The exothermic differential molar enthalpies of adsorption demonstrate the same behaviour as the enthalpies of micellization with varying temperature or salinity. Adsorption onto silica gel depends on the NDB concentration, the salt concentration and temperature.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号