首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

2.
The DANTE technique and NOESY two-dimensional method have been employed to observe the isomerization of the chiral cationic complex [Pd(η3-CH2CMeCH2(P-P′)]+ (1a), where P-P′ = the chiral chelating ligand (S)(N-diphenylphosphino)(2-diphenylphosphinoxymethyl)pyrrolidine. The rate constant was found to be 0.5 s−1 in CHCl3 at 295 K and 1.50 s−1 in the presence of added free ligand. In the latter case the epimerization proceeds by a π-σ-π mechanism via the intermediacy of a primary η1-allylpalladium complex. Although the intermediate was not detected, the NMR findings reveal that it has the allylic terminus η1-bonded to palladium. The structure of 1a in its PF6 salt has been determined. The compound crystallizes in the orthorhombic space group P212121 with a 10.029(4) b 19.203(8) c 36.115(6) Å, Z = 8, R = 0.0572 and Rw = 0.0712 for 3716 observed reflections with I > 3σ(I).  相似文献   

3.
D. O. M  rtire  M. R. F  liz  A. L. Capparelli 《Polyhedron》1988,7(24):2709-2714
Using the temperature jump technique, the study of the kinetics of the complexing of oxomolybdate anion with malic acid has been carried out in aqueous solutions of pH 7.15–8.5 at ionic strength 0.1 M (KNO3) and 25°'C. A reaction scheme for the formation of 1 : 1 complexes is proposed which accounts for the observed relaxation rates.

The significance of the ligand deprotonation on the complexation reaction of MoO42− by a single protonated ligand, i.e. MoO42−+LHnk→MoO3(OH)Ln−2, (where n = 1 -, 2 -, etc), is analysed on the basis of a simple model. A linear correlation between the log k and the pK of the monoprotonated ligand (LH) is found for this reaction when the global process is controlled by the proton transfer from the ligand to an oxogroup, i.e. log k = a - 0.5xpK. It is found that this correlation is satisfied by MoO42− and WO42−. The experimental slopes for these oxyanions are −0.503 and −0.543 respectively, in agreement with the predictions.  相似文献   


4.
X-Ray diffraction, IR and 1H NMR studies were performed on the 1:1 adduct of 1,8-bis(dimethylamino)naphthalene (DMAN) with 1,8-dihydroxy-2,4-dinitronaphthalene (DHDNN). The adduct crystallizes in the triclinic system, space group , a = 9.911(2) Å, b = 11.212(2) Å, c = 11.194(2) Å, = 68.95(2)°, β = 79.72(2)°, γ = 73.78(2)°, Z = 2. Both [NHN]+ and [OHO] hydrogen bonds formed in the ion pairs are asymmetrical with lengths equal to 2.574(2) Å and 2.466(4) Å respectively. The [NHN]+ bridge shows a typical behaviour in the IR spectrum, i.e. a low-frequency absorption between 300 and 700 cm−1. The coupling of [OHO] hydrogen bonds with the naphthalene π-electron system is so strong that no absorption related to the proton stretching vibrations can be detected in the high- and low-frequency regions. The 1H NMR chemical shifts for the [NHN]+ and [OHO] bridge protons of 18.63 and 15.81 ppm respectively confirm the strong hydrogen bonds.  相似文献   

5.
New ester salts [R3NH]+[F5SC(SO2F)C(O)OR′] where RH, CH3CH2 and R′CH3,(CH3)2CH have been prepared from corresponding esters and amines. The sodiumsalt Na[F5SC(SO2F)C(O)OCH(CH3)2] was used to prepare the following -substitutedderivatives: SF5CX(SO2F)C(O)OCH(CH3)2, XBr, Cl. The crystal structure of[(C2H5)3NH]+[F5SC(SO2F)C(O)OCH3] was determined and is monoclinic: P21/n;a=8.758(2) Å, b=9.645(2) Å and c=19.167(4) Å; β=97.92(3)°; V=1603.6 Å3; Z=4.  相似文献   

6.
7.
Recent measurements of Rayleigh scattering employing neutron capture γ-rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than the other competing coherent processes. A detailed comparison with the modified relativistic form factor (MRFF) approximation is made and it is concluded that the latter overestimates the cross-section by 3–4%. New calculations of S, the incoherent scattering function, are presented in the relativistic treatment of Ribberfors and Berggren, using multiconfiguration Dirac–Fock relativistic wavefunctions. Tables of S, for Z=1–110, are shown on a momentum transfer mesh identical to previous non-relativistic calculations. S has been calculated at a representative angle θ=60° and energies compatible with the presentation mesh. For other scattering angles, the values presented in the tables are accurate to within 1–2% for momentum transfers larger than 0.1 Å−1. In the region below 0.1 Å−1 the accuracy worsens with decreasing momentum transfer, reaching 6% at 0.01 Å−1 and 10% at 0.005 Å−1. The same multiconfiguration wave functions were used to evaluate new MRFFs. The new elastic scattering cross sections differ by 3–6% compared with calculations based on single configuration wave functions.  相似文献   

8.
The structure of the complex [Ni(hmt)(NCS)2(H2O)2]n, assembled by hexamethylenetetramine (hmt) and octahedral Ni(II), is reported. Crystal data: Fw 351.07, a=9.885(10) Å, b=12.06(1) Å, c=12.505(8) Å, β=114.41(4)°, V=1357(1) Å3, Z=4, space group=C2/c, T=173 K, λ(MoK)=0.71070 Å, ρcalc=1.718 gcm−1, μ=17.44 cm−1, R=0.099, Rw=0.145. The tetrahedral assembling template effect of the hmt molecule is completed by two coordination bonds and two hydrogen interactions. The UV–vis absorption spectrum of this complex [Ni(hmt)(NCS)2(H2O)2]n with a two-dimensional network is determined in the range of 5000–35000 cm−1 at room temperature. The observed spectrum is discussed and explained perfectly by the scaling radial theory proposed by us. The two-dimensional structure has no apparent effects on the d–d transitions of the central Ni(II) ion. The IR spectrum and the GT curve of the complex were also measured and clearly reflect its structural properties.  相似文献   

9.
The crystal structures of pharmaceutical product mesalazine (marketed also under different proprietary names as Salofalk, Asacol, Asacolitin, and Claversal) and its hydrochloride are reported. In the crystal mesalazine is in zwitterion form as 5-ammoniosalicylate (1) whereas mesalazine hydrochloride crystallizes in an ionized form as 5-ammoniosalicylium chloride (2). Compound 1 (C7H7O3N) crystallizes in the monoclinic space group P21/n with a = 3.769(1) Å, b = 7.353(2) Å, c = 23.475(5) Å, β = 94.38(2)°, V = 648.7(8) Å3, Z = 4, Dc = 1.568 g cm−3 and μ(MoK) = 1.2 cm−1. Compound 2 (C7H8O3NCl) crystallizes in the triclinic space group P with a = 4.4839(2) Å, b = 5.7936(2) Å, c = 15.6819(5) Å, = 81.329(3)°, β = 88.026(3)°, γ = 79.317(4)°, V = 395.74(3) Å3, Z = 2, Dc = 1.591 g cm−3 and μ(CuK) = 40.8 cm−1. The crystal structures were solved by direct methods and refined to R = 0.041 for 1 and 0.028 for 2, using 607 and 1374 observed reflections, respectively. The configuration of both molecules, with the ortho hydroxyl to a carboxyl group, favours the intramolecular hydrogen bonds. Very complex systems of intermolecular hydrogen bonds were observed in both crystal packings. They are discussed in terms of graph-set notation. The mesalazine crystal structure is characterized by two-dimensional network of hydrogen bonds in the ab plane. The crystal structure pattern of mesalazine hydrochloride is a three-dimensional network significantly supported by N+---HCl interactions.  相似文献   

10.
13C cross polarization-magic angle spinning NMR spectra were measured for a series of peptides containing -valine, -leucine and -aspartic acid residues, for which the crystal structures were already determined by X-ray diffraction, in order to investigate the relationship between hydrogen-bond lengths (RN…O) and 13C chemical shifts of amide carbonyl carbons in the peptides. From these experimental results, it was found that the isotropic 13C chemical shifts (δiso) of the amino acid residues move linearly downfield with a decrease in RN…O within the hydrogen-bonded length range considered here and also shown in our previous work on glycine and -alanine residues as expressed by δiso(ppm) = abRN…O(Å) where a and b are 215.4 (ppm) and 14.2 (ppm Å−1) for the -valine residue, 202.2 (ppm) and 10.0 (ppm Å−1) for the -leucine residue, and 199.0 (ppm) and 9.6 (ppm Å−1) for the -aspartic acid residue, respectively. Using these relations, the RN…O values of some polypeptides in the crystalline state were determined through the observation of the amide carbonyl carbon chemical shifts. These values were compared with those determined by the X-ray diffraction method. Furthermore, quantum-chemical calculation of the 13C shielding constant for a model compound was carried out by the finite perturbation theory INDO method in order to ascertain the 13C shielding behavior in the formation of hydrogen bonds.  相似文献   

11.
A tetrasilver(I) phosphonitocavitand was synthesized and structurally characterized. The compound crystallizes in the monoclinic space group P21/n with a=15.0151(13), b=39.832(4), c=15.2479(14) Å, β=95.1000(2)°, V=9083.3(14) Å3 and Z=4. The structure contains four coplanar silver atoms bridged by four μ-Cl and one central trapped μ4-Cl atoms in the inside of the closing bowl-shaped cavitand. Nonlinear optical properties of this metal-cavitand were investigated. Optical limiting effect with threshold of 0.6 J cm−2 was observed with the laser pulses of 7 ns at 532 nm.  相似文献   

12.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

13.
A performance evaluation of Density Functional Tight Binding (DFTB) in the two-layer ONIOM method is presented in an effort to estimate DFTB effectiveness as an inexpensive low level quantum mechanical layer. Ground state geometries, geometry error, S-values and energy error for: (H2O)x(MeOH)y, [(η5-C5MenH5−n)2Ti]22, η22-N2), n = 4, and complexes of Cu+ with tyrosine, were compared to target calculations at B3LYP level of theory for all three of the systems and second order Moller-Plesset (MP2) target level of theory for the first two systems. The calculated root-mean-square errors (RMS) of the ONIOM optimized geometries relative to the target are found to be small. The DFTB level of theory was unable to reproduce the target geometry structure for one of the isomers of tyrosine–Cu+ complex, while the ONIOM combinations were able to reproduce all target structures. The absolute value of the geometry error was determined to be smaller then the corresponding energy error except for the (H2O)x(MeOH)y system at the ONIOM(MP2/6-31G(d,p):DFTB) level of theory. The S-values were relatively small and close in value contributing to relatively small energy errors. Both method combinations ONIOM(MP2:DFTB) and ONIOM(DFT:DFTB) show similar performance compared to the corresponding target level of theory. The results also suggest that it is safe to use ONIOM(DFT:DFTB) for investigations of [(η5-C5MenH5−n)2Ti]22, η22-N2) complexes.  相似文献   

14.
The composition of (C6Me6)TiAl2Cl8−xEtx complexes in (C6Me6)TiAl2Cl8 + n Et3Al (n = 0.5-6) systems was studied by UV-Vis spectroscopy and the X-ray crystal structure of one of them, (η6-C6Me6)Ti[(μ-Cl)2(AlClEt)]2 (IIa-2), has been determined. The complex crystallizes in the orthorhombic space group Pna21 with Z = 4 and lattice parameters a 15.634(3), b 11.355(2), c 14.417(2) Å. The ethyl groups of IIa-2 reside in outer positions of aluminate ligands farther away from the C6Me6 ligand. The other part of the complex does not differ remarkably from structures of other (arene)TiII complexes. Negligible activity of (C6Me6)TiAl2Cl8 towards the butadiene cyclotrimerization is considerably increased by addition of 2.5–3.0 equivalents of Et3Al. As follows from UV-Vis spectra, such systems contain mainly the (C6Me6)TiAl2Cl5Et3 complex. It is suggested that the introduction of three Et substituents destabilizes the Ti-(η6-C6Me6) bond so that the replacement of hexamethylbenzene by butadiene in the first step of a catalytic cycle becomes more feasible.  相似文献   

15.
The reactions of 2-trans-6-N4P4(NHPrn)2Cl6 (2), which was obtained from N4P4Cl8 (1) and n-propylamine, with pyrrolidine and t-butylamine in different solvents have been studied. Compound (2) gave two different products, namely monocyclic (3 and 5) and bicyclic (4 and 6) phosphazenes. Compounds (2–6) have been characterized by elemental analysis, IR, 1H-, 13C-, 31P NMR, HETCOR and MS and the structure of compound (5) has been examined crystallographically. The bicyclic phosphazene (6) is the first exciting example of bicyclic phosphazenes containing chlorine atoms, in the literature. The formation mechanisms of bicyclic phosphazenes are re-considered by taking into account the synthesis of compound (6), which contains three stereogenic phosphorus atoms. Compound (5) crystallizes in the monocyclic space group P21/n with a=13.974(2), b=17.836(5), and c=18.683(4) Å, β=98.50(1)°, V=4605.4(2) Å3, Z=4 and Dx=1.051 g cm−3. It consists of a non-centrosymmetric, non-planar phosphazene ring in a saddle conformation, with two n-propylamino (in 2-trans-6 positions) and six bulky t-butylamino side groups. The bulky substituents are instrumental in determining the molecular geometry.  相似文献   

16.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

17.
A calorimetric study was performed for adducts of general formula CdBr2·nL (n=1 and 2; L=ethyleneurea (eu) and propyleneurea (pu)). The standard molar reaction enthalpy in condensed phase: CdBr2(c)+nL(c)=CdBr2·nL(c); ΔrHmθ, were obtained by reaction–solution calorimetry, to give the following values for mono- and bis-adducts: −19.54 and −34.59; −7.77 and −19.05 kJ mol−1 for eu and pu adducts, respectively. Decomposition (ΔDHmθ) and lattice (ΔMHmθ) enthalpies, as well as the mean cadmium---oxygen bond dissociation enthalpy, DCd---O, were calculated for all adducts.  相似文献   

18.
Nickel(II) chromate complex with imidazole (HIm) was isolated from the [Ni2+–HIm–CrO42−] system in various experimental conditions, i.e. reagent molar ratios and nickel(II) salts. The catena(μ-CrO4-O,O′)[Ni(HIm)3H2O] (1) crystallizes in monoclinic crystal system—space group P21/n with cell parameters: a=11.784(2), b=8.899(2), c=13.934(3) (Å), β=95.19(3) (°). The unit cell contains two independent helixes, left- and right-handed, stabilized by intrahelical and interhelical hydrogen bonds (HB) and π–π interactions. The cis coordination of the CrO42− anions and the HB systems appeared to be the main determinants of the helical architecture. To the best of our knowledge the cis-chromate coordination was observed for the first time. The cis coordination causes the distortion of the nickel octahedron, which was analysed by 4 K single crystal electronic spectra with D4h symmetry approximation (gaussian resolution and crystal field parameters). This symmetry was also confirmed with the polarised electronic spectra. The magnetic properties of the complex suggest the occurrence of weak intrachain antiferromagnetic interactions between the magnetic NiII center. The computational DFT studies of complex 1 assuming three possible isomers mer[(HIm)3]–cis[(CrO42−)2], mertrans and faccis suggested that the main contribution to the stability of 1 might have interhelical and intrahelical hydrogen bonds.  相似文献   

19.
A mechanistic model for the kinetics of polymeric bond scission by X-rays has been developed, with certain assumptions and approximations. The equation governing the number of bonds broken by radiation is found to be Y=1−aecDbedD where ad are constants and D the dose. The model has been tested for the case of CR-39 plastic irradiated with X-rays for doses from 50 to 600 kGy. The concentration of CO2 molecules produced inside the plastic, which gave a direct measure of the number of bonds broken by irradiation, was measured using the FTIR absorption bands at 670 and 2350 cm−1. The fraction of the broken bonds was plotted against the radiation dose and the experimental data were found to fit well with the mechanistic model. The values of the various breaking constants for the CR-39 plastic under the mechanistic model were also determined.  相似文献   

20.
Intrinsic viscosities, [η], second virial coefficients, A2, and preferential solvation coefficients, λ, for the ternary systems n-alkane (l)-butanone (2)-poly(dimethylsiloxane) (PDMS) (3), with n-alkane = n-hexane, n-heptane, n-nonane and n-undecane, have been determined at 20°. The K and a constants of the Mark-Houwink equation have been evaluated over the whole composition range of the binary solvent mixtures. Polymer (mixed solvent) interaction parameters and unperturbed dimensions have been evaluated both from A2 and [η] data, the feasibility of A2 evaluation from [η] experimental data or vice versa being discussed. Experimental and calculated (through Dondos and Patterson theory) excess free energies, GE, follow similar trends with composition; large numerical discrepancies, however, arise between both sets of GE. Maxima in [η], in a and in A2 are accompanied by inversion points in λ. The solvent mixture composition range in which PDMS is preferentially solvated by n-alkane, as well as the extent of solvation, decrease with increasing number of carbon atoms in the n-alkane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号