共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy 总被引:1,自引:1,他引:0
Kehlet C Bjerring M Sivertsen AC Kristensen T Enghild JJ Glaser SJ Khaneja N Nielsen NC 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,188(2):216-230
We present novel pulse sequences for magic-angle-spinning solid-state NMR structural studies of (13)C,(15)N-isotope labeled proteins. The pulse sequences have been designed numerically using optimal control procedures and demonstrate superior performance relative to previous methods with respect to sensitivity, robustness to instrumental errors, and band-selective excitation profiles for typical biological solid-state NMR applications. Our study addresses specifically (15)N to (13)C coherence transfers being important elements in spectral assignment protocols for solid-state NMR structural characterization of uniformly (13)C,(15)N-labeled proteins. The pulse sequences are analyzed in detail and their robustness towards spin system and external experimental parameters are illustrated numerically for typical (15)N-(13)C spin systems under high-field solid-state NMR conditions. Experimentally the methods are demonstrated by 1D (15)N-->(13)C coherence transfer experiments, as well as 2D and 3D (15)N,(13)C and (15)N,(13)C,(13)C chemical shift correlation experiments on uniformly (13)C,(15)N-labeled ubiquitin. 相似文献
2.
3.
Beckmann PA Dybowski C 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2000,146(2):379-380
We discuss a method to determine temperature in a static NMR experiment from the temperature variation of the lead nitrate peak shift. 相似文献
4.
Solid-state NMR experiments benefit from being performed at high fields, and this is essential in order to obtain spectra with the resolution and sensitivity required for applications to protein structure determination in aligned samples. Since the amount of rf power that can be applied is limited, especially for aqueous protein samples, the most important pulse sequences suffer from bandwidth limitations resulting from the same spread in chemical shift frequencies that aids resolution. SAMPI4 is a pulse sequence that addresses these limitations. It yields separated local field spectra with narrower and more uniform linewidths over the entire spectrum than the currently used PISEMA and SAMMY experiments. In addition, it is much easier to set up on commercial spectrometers and can be incorporated as a building block into other multidimensional pulse sequences. This is illustrated with a two-dimensional HETCOR experiment, where it is crucial to transfer polarization from the amide protons to their directly bonded nitrogens over a wide range of chemical shift frequencies. A quantum-mechanical treatment of the spin Hamiltonians under high-power rf pulses is presented which gives the scaling factor for SAMPI4 as well as the durations of the rf pulses to achieve optimal decoupling. 相似文献
5.
Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function. 相似文献
6.
Bak M Rasmussen JT Nielsen NC 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2000,147(2):296-330
7.
Dvinskikh SV Yamamoto K Dürr UH Ramamoorthy A 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2007,184(2):228-235
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed. 相似文献
8.
9.
A Ramamoorthy C H Wu S J Opella 《Journal of magnetic resonance (San Diego, Calif. : 1997)》1999,140(1):131-140
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine. 相似文献
10.
11.
A new through-bond carbon-proton correlation technique, the MAS-J-HSQC experiment, is described for solid-state NMR. This new pulse scheme is compared experimentally with the previously proposed MAS-J-HMQC experiment in terms of proton resolution on a model sample of powdered L-alanine. We show that for natural abundance compounds, the MAS-J-HMQC and MAS-J-HSQC experiments give about the same proton resolution, whereas, for (13)C-labeled materials, narrower proton linewidths are obtained with the MAS-J-HSQC experiment. In addition we show that in scalar as well as in dipolar heteronuclear shift correlation experiments, when the proton chemical shift is encoded by the evolution of a single-quantum coherence, the proton resolution can be enhanced by simply adding a 180 degrees carbon pulse in the middle of the t(1) evolution time. 相似文献
12.
The ability of NMR parameters T1 and T2 to be used to distinguish one tissue from another and diseased from normal tissues has wide application in diagnostic medicine. Measurement of such values in vitro on excised tissues and fluids was the basis for fundamental discoveries which provided the impetus for the development of in vivo clinical whole body NMR imagers. Therefore, as in vivo imaging grows, the need for screening and testing of new ideas in vitro will grow. The success of data collection in vitro depends greatly on the care and understanding with which biological samples are processed. This paper summarizes proven methods for handling of soft and firm biopsy material, blood components, body fluids, and culture cells. The effects of temperature variation and storage parameters are discussed for animal and human samples. The paper is a practical guide to the hows and whys of biological sample handling for NMR. 相似文献
13.
17O solid state NMR of organic materials is developing rapidly. This article provides a snapshot of the current state of development of this field. The NMR techniques and enrichment protocols that are driving this progress are outlined. The 17O parameters derived from solid-state NMR experiments are summarized and the structural sensitivity of the approach to effects such as hydrogen bonding highlighted. The prospects and challenges for 17O solid-state NMR of biomolecules are discussed. 相似文献
14.
Webster A Osifo PO Neomagus HW Grant DM 《Solid state nuclear magnetic resonance》2006,30(3-4):150-161
Individual polyglycans and their corresponding monomers have been studied separately for several decades. Attention has focused primarily on the modifications of these polyglycans instead of the simple relationship between the polyglycans themselves and their corresponding monomers. Two polyglycans, chitin and chitosan, were examined along with their respective monomeric units, N-acetyl-D-glucosamine (GlcNAc) and (+)D-glucosamine (GlcN) using solid-state proton decoupling Magic Angle Turning (MAT) techniques and X-Ray Powder Diffraction (XRPD). A down-field shift in isotropic (13)C chemical shifts was observed for both polymers in Cross Polarization/Magic Angle Spinning (CP/MAS) spectra. An explanation of misleading peak assignments in previous NMR studies for these polyglycans was determined by comparing sideband patterns of the polymers with their corresponding monomers generated in a 2D FIve pi REplicated Magic Angle Turning (FIREMAT) experiment processed by Technique for Importing Greater Evolution Resolution (TIGER). Structural changes in the crystalline framework were supported by XRPD diffraction data. 相似文献
15.
《Solid state nuclear magnetic resonance》2007,31(3-4):150-161
Individual polyglycans and their corresponding monomers have been studied separately for several decades. Attention has focused primarily on the modifications of these polyglycans instead of the simple relationship between the polyglycans themselves and their corresponding monomers. Two polyglycans, chitin and chitosan, were examined along with their respective monomeric units, N-acetyl-d-glucosamine (GlcNAc) and (+)d-glucosamine (GlcN) using solid-state proton decoupling Magic Angle Turning (MAT) techniques and X-Ray Powder Diffraction (XRPD). A down-field shift in isotropic 13C chemical shifts was observed for both polymers in Cross Polarization/Magic Angle Spinning (CP/MAS) spectra. An explanation of misleading peak assignments in previous NMR studies for these polyglycans was determined by comparing sideband patterns of the polymers with their corresponding monomers generated in a 2D FIve π REplicated Magic Angle Turning (FIREMAT) experiment processed by Technique for Importing Greater Evolution Resolution (TIGER). Structural changes in the crystalline framework were supported by XRPD diffraction data. 相似文献
16.
Stable isotope labeling methods for protein NMR spectroscopy 总被引:1,自引:0,他引:1
Shin-ya Ohki Masatsune Kainosho 《Progress in Nuclear Magnetic Resonance Spectroscopy》2008,53(4):208-226
17.
18.
J.L. Crisp S.E. Dann M. Edgar C.G. Blatchford 《Solid state nuclear magnetic resonance》2010,37(3-4):75-81
The polymorphic forms of lactose in alcoholic suspensions have been determined by 13C CP-MAS NMR spectroscopy, employing hand-made glass inserts. Suspensions of alpha lactose monohydrate (Lα·H2O) with particle size between 2 and 200 μm were prepared by 24 h reflux or by storage for 28 d in anhydrous ethanol without agitation. These suspensions were compared to an ethanolic sub-micron lactose suspension provided by a 3 M Health Care (Loughborough). The 13C CP-MAS NMR spectra indicated that Lα·H2O dehydrated to stable anhydrous alpha lactose polymorph (LαS) whilst suspended in ethanol. In addition, strong ethanol 13C resonances were observed for some samples, indicating a liquid–solid interaction between the ethanol and lactose surface. Replacement of ethanol with anhydrous methanol, n-butanol and 3-methylbutan-2-ol implied that the solvent mediated dehydration of Lα·H2O to LαS occurs as a result of sterically controlled interactions. 相似文献
19.
20.
Several different amplitude-modulated two-dimensional high-resolution methods, based on MQMAS and STMAS, are compared. They include 3QMAS, 5QMAS, DQ-STMAS, and DQF-STMAS experiments. A new method, called t1-split-STMAS, is also proposed for spin-3/2 nuclei. The comparison is performed in terms of isotropic resolution and spectral-width, efficiency, and sensitivity to magic-angle offset and spinning speed fluctuations. 相似文献