首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The alpha-beta anomer energy difference and the stability of 10 rotamers of counterclockwise D-glucopyranose were studied in vacuo and in aqueous solution at the B3LYP/6-31+G(d,p) level. To obtain the solute charge distribution and the solvent structure around it, we used the averaged solvent electrostatic potential from molecular dynamics method, ASEP/MD, which alternates molecular dynamics and quantum mechanics calculations in an iterative procedure. The main characteristics of the anomeric equilibrium, both in vacuo and in solution, are well reproduced. The relative stability of the different anomers is related to the availability of the free pairs of electrons in the anomeric oxygen to interact with the water molecules. The influence of solvation in the conformer equilibrium is also analyzed.  相似文献   

2.
3.
Altogether eight keto and enol tautomers of guanine were studied theoretically in the gas phase, in a microhydrated environment (1 and 2 water molecules) and in bulk water. The structures of isolated, as well as mono- and dihydrated tautomers were determined by means of the RI-MP2 method using the extended TZVPP (5s3p2d1f/3s2p1d) basis set. The relative energies of isolated tautomers included the correction to higher correlation energy terms evaluated at the CCSD(T)/aug-cc-pVDZ level. The relative enthalpies at 0 K and relative free energies at 298 K were based on the above-mentioned relative energies and zero-point vibration energies, temperature-dependent enthalpy terms and entropies evaluated at the MP2/6-31G level. The keto form having hydrogen atom at N7 is the global minimum while the canonical form having hydrogen atom at N9 represents the first local minimum at all theoretical levels in vacuo and in the presence of 1 and 2 water molecules. All three unusual rare tautomers having hydrogens at N3 and N7, at N3 and N9, and also at N9 and N7 are systematically considerably less stable and can be hardly detected in the gas phase. The theoretical predictions fully agree with existing theoretical as well as experimental results. The effect of bulk solvent on the relative stability of guanine tautomers was studied by self-consistent reaction field and molecular dynamics free energy calculations using the thermodynamic integration method. Bulk solvent, surprisingly, strongly favored these three rare tautomers over all remaining low-energy tautomers and probably only these forms can exist in water phase. The global minimum (tautomer with hydrogens at N3 and N7) is by 13 kcal/mol more stable than the canonical form (3rd local minimum). Addition of one or two water molecules does not change the relative stability order of isolated guanine tautomers but the respective trend clearly supports the surprising stabilization of three rare forms.  相似文献   

4.
The alpha-, beta-, and gamma-cyclodextrin (CyD) dimers have been studied by molecular mechanics (MM) and molecular dynamics (MD) calculations, and the relative stability of dimers and the involved molecular interactions have been determined. Three possible orientations were considered for the alpha-, beta-, and gamma-CyD dimers: the head-to-head, the head-to-tail, and the tail-to-tail. In vacuo MM calculations were used to obtain the most stable arrangements, and MD simulations were performed over all energy minima obtained for each dimer. Results from MD always show head-to-head orientation as the most stable as a result of the larger number of intermolecular hydrogen bonds present.  相似文献   

5.
The thermodynamic features of a synthetic molecular thread, recently proposed acting as an electrochemically-driven two-states molecular device, have been systematically investigated by means of nanoseconds time-scale classical molecular dynamics (MD) simulations and basic statistical mechanics relations. Results clearly suggest that the accessible conformational space of such a potential molecular switch shows a strong environmental dependence: the reversible molecular switching mechanism observed in liquid solution is effectively suppressed when the synthetic thread is hypothesized working in vacuo. Such a result has been related to a subtle energetic/entropic balance experienced by the whole system (solute and solvent) during the intramolecular conformational transition of the molecular thread, in presence and in absence of the solvent.  相似文献   

6.
We applied the free-energy perturbation method together with the averaged solvent electrostatic potential from molecular dynamics (ASEP/MD) method to study the anomeric equilibrium of d-xylose in aqueous solution. The level of calculation, 6-311G++(2d,2p) basis set and density functional theory, permits one to explain the main characteristics of the anomeric equilibrium of d-xylopyranose: in vacuo, the anomeric effect predominates and the form is the stabler. In water, solvation leads to the form being the stabler. A comparison between the performances of the ASEP/MD and polarizable continuum models is also presented.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

7.
8.
Tautomeric equilibria have been studied for five-member N-heterocycles and their methyl derivatives in the gas phase and in different solvents with dielectric constants of epsilon = 4.7-78.4. The free energy changes differently for tautomers upon solvation as compared to the gas phase, resulting in a shift of the equilibrium constant in solution. Solvents with increasing dielectric constant produce more negative solute-solvent interaction energies and increasing internal energies. The methyl-substituted imidazole and pyrrazole form delicate equilibria between two tautomeric forms. Depending on the solvent, the methyl-substituted triazoles and tetrazole have one or two major tautomers in solution. When estimating the relative solvation free energies by means of an explicit solvent model and using the FEP/MC method, one observes that the preferred tautomers differ in several cases from those predicted by the continuum solvent model. The 1,2-prototropic shift, as an intramolecular tautomerization path, requires about 50 kcal/mol activation energy for imidazole in the gas phase, and this route is also disfavored in a solution. The calculated activation free energy along the intramolecular path is 48-50 kcal/mol in chloroform and water as compared to a literature value of 13.6 kcal/mol for pyrrazole in DMSO. A molecular dynamics computer experiment favors the formation of an imidazole chain in chloroform, making the 1,3-tautomerization feasible along an intermolecular path in nonprotic solvents. In aqueous solution, one strong N-H...Ow hydrogen bond is formed for each species, whereas all other nitrogens in the ring form weaker, N...HwOw type hydrogen bonds. The tetrahydrofuran solvent acts as a hydrogen bond acceptor and forms N-H...Oether bonds. Molecules of the dichloromethane solvent are in favorable dipole-dipole interactions with the solute. The results obtained are useful in the design of N-heterocyclic ligands forming specified hydrogen bonds with protein side chains.  相似文献   

9.
We have carried out a mixed molecular dynamics and centroid path integral simulation using a combined quantum mechanical and molecular mechanical (QM/MM) potential to study the anomalous Br?nsted relationship between rates and equilibria for deprotonation of nitroalkanes in water, which is known as the nitroalkane anomaly. The deprotonation process is catalyzed by nitroalkane oxidase. Our results show that the difference in solvent polarization effects for the TS and products is a major factor for the differential solvent effects on rate and equilibrium of nitroalkane deprotonation. This is due to poor charge delocalization as a result of slow rehybridization compared to bond breaking. Although solvent effects do not affect significantly the computed kinetic isotope effects in comparison with the gas-phase value, there is slight solvent-induced increase in tunneling. The present results suggest that an effective means by which the transition state can be stabilized in the enzyme nitroalkane oxidase is to facilitate the Calpha rehybridization.  相似文献   

10.
The potentials of mean force (PMFs) were determined for systems involving formation of nonpolar dimers composed of methane, ethane, propane, isobutane, and neopentane, respectively, in water, using the TIP3P water model, and in vacuo. A series of umbrella-sampling molecular dynamics simulations with the AMBER force field was carried out for each pair in either water or in vacuo. The PMFs were calculated by using the weighted histogram analysis method (WHAM). The shape of the PMFs for dimers of all five nonpolar molecules is characteristic of hydrophobic interactions with contact and solvent-separated minima and desolvation maxima. The positions of all these minima and maxima change with the size of the nonpolar molecule, that is, for larger molecules they shift toward larger distances. The PMF of the neopentane dimer is similar to those of other small nonpolar molecules studied in this work, and hence the neopentane dimer is too small to be treated as a nanoscale hydrophobic object. The solvent contribution to the PMF was also computed by subtracting the PMF determined in vacuo from the PMF in explicit solvent. The molecular surface area model correctly describes the solvent contribution to the PMF together with the changes of the height and positions of the desolvation barrier for all dimers investigated. The water molecules in the first solvation sphere of the dimer are more ordered compared to bulk water, with their dipole moments pointing away from the surface of the dimer. The average number of hydrogen bonds per water molecule in this first hydration shell is smaller compared to that in bulk water, which can be explained by coordination of water molecules to the hydrocarbon surface. In the second hydration shell, the average number of hydrogen bonds is greater compared to bulk water, which can be explained by increased ordering of water from the first hydration shell; the net effect is more efficient hydrogen bonding between the water molecules in the first and second hydration shells.  相似文献   

11.
 Molecular mechanics minimizations based on the CVFF force field and molecular dynamics simulation for a time of 2.5 ns were performed to examine the conformational behaviour and the molecular motion of acetylcholine in vacuo and in aqueous solution. Five low-lying conformations, namely the TT, TG, GG, G*G and GT, were obtained from molecular mechanics computations with the GT structure as the absolute minimum. Molecular dynamics trajectories in vacuo and in water show that only four (GT, GG, G*G and TG) and three (TG, TT and GT) conformations are present in the simulation time, respectively. Density functional B3LYP and second-order M?ller–Plesset (MP2) methods were then used to study all the five lowest-lying conformers of acetylcholine neurotransmitter in vacuo and in water by the polarizable continuum model approach. The B3LYP and MP2 computations show that in the gas phase all minima lie in a narrow range of energy with the G*G conformer as the most stable one. The relative minima GG, GT, TG and TT are located at 1.1 (3.3), 1.8 (4.2), 2.1 (4.5) and 4.3 (7.3) kcal/mol above the absolute one at the B3LYP (MP2) level. The preferred conformation in water is the TG. Solvation reduces the relative energy differences between the five minima in both computations. Received: 4 April 2001 / Accepted: 5 July 2001 / Published online: 30 October 2001  相似文献   

12.
The eight nucleoside constituents of nucleic acids were simulated for 50 ns in explicit water with molecular dynamics. This provides equilibrium populations of the torsional degrees of freedom, their kinetics of interconversion, their couplings, and how they are influenced by water. This is important, given that a full and quantitative characterization of the nucleosides in aqueous solution by experimental means has been elusive, despite immense efforts in that direction. It is with the anti/syn equilibrium that the simulations are most complementary to experiment, by accessing directly the influence of the sugar type, sugar pucker, and base on the anti/syn populations. The glycosidic torsion distributions in the anti conformation are strongly affected by water and depart from the corresponding X-ray modal values and the associated energy minima in vacuo. Water also preferentially stabilizes some sugar conformations, showing that potential energies in vacuo are not sufficient to understand the nucleosides. Deoxythymidine (but not other pyrimidines) significantly populates the syn orientation. Guanine favors the syn orientation more than adenine. The ribose favors the syn orientation significantly more than the deoxyribose. The NORTH pucker coexists with the syn conformers. A hydrogen bond is frequently formed between the 5'-OH group and the syn bases, despite competition by water. The rate of the anti/syn transitions with purines is on the nanosecond time scale, confirming a long held assumption underpinning the interpretation of ultrasonic relaxation studies. Therefore, our knowledge of the structure and dynamics of nucleosides in solvent is only limited by the accuracy of the potential used to simulate them, and it is shown that such simulations provide a distinct and unique test of nucleic acid force fields. This confirmed that the widely distributed CHARMM27 force field is, overall, well-balanced with a particularly good representation of the ribose. Specific improvements, however, are suggested for the deoxyribose and torsion gamma.  相似文献   

13.
14.
NMR J-couplings across hydrogen bonds reflect the static and dynamic character of hydrogen bonding. They are affected by thermal and solvent effects and can therefore be used to probe such effects. We have applied density functional theory (DFT) to compute the NMR (n)J(N,H) scalar couplings of a prototypical Chagas disease drug (metronidazole). The calculations were done for the molecule in vacuo, in microsolvated cluster models with one or few water molecules, in snapshots obtained from molecular dynamics simulations with explicit water solvent, and in a polarizable dielectric continuum. Hyperconjugative and electrostatic effects on spin-spin coupling constants were assessed through DFT calculations using natural bond orbital (NBO) analysis and atoms in molecules (AIM) theory. In the calculations with explicit solvent molecules, special attention was given to the nature of the hydrogen bonds formed with the solvent molecules. The results highlight the importance of properly incorporating thermal and solvent effects into NMR calculations in the condensed phase.  相似文献   

15.
The influence of solvation on the conformational isomerism of calix[4]arene and p-tert-butylcalix[4]arene has been investigated by using the continuum model reported by Miertus, Scrocco, and Tomasi (MST). The quantum mechanical (QM) and semiclassical (SC) formalisms of the MST model have been considered for two different solvents (chloroform and water). The suitability of the QM-MST and SC-MST methods has been examined by comparison with previous results derived from classical molecular dynamics (MD) simulations with explicit solvent molecules. The application of the continuum model to the solute configurations generated by using in vacuo classical MD simulations provides a fast strategy to evaluate the effects of the solvent on the conformational preferences of calixarenes. These encouraging results allow us to propose the use of continuum models to solutes with complex molecular structures, which are traditionally studied by MD simulations.  相似文献   

16.
The potential energy surfaces and non-adiabatic dynamics of the C5H6NH 2 + protonated Schiff base (PSB3) have been investigated using the OM2 semiempirical Hamiltonian with GUGA configuration interaction. Three approaches to selecting the GUGA-CI active space are evaluated using closed-shell and open-shell molecular orbitals. Energy minima and minimum energy crossing points (MECPs) have been compared with ab initio CASSCF and CASPT2 results. Only the open-shell calculations give a qualitatively correct MECP. Minimum energy path (MEP) calculations demonstrate that a minimal active space gives a barrierless path from the planar S1 minimum to the ground state, whereas larger active spaces result in a small barrier to torsional motion. Surface hopping dynamics calculations indicate that this barrier induces bi-exponential dynamics. The comparable CASSCF S1 energy surface is barrierless, but the CASPT2 surface features an energy plateau, which may also lead to more complex dynamics.  相似文献   

17.
All possible combinations of stable dihedral values have been considered in vacuo at the B3LYP/6-31G level for 3,9-dihydroxy-4,8-diprenylpterocarpan (erybraedin C), whose hydroxy out-out conformation had been examined earlier together with the conformational preferences of 3,9-dimethoxy-4-prenylpterocarpan (bitucarpin A) at the same level (Phys. Chem. Chem. Phys. 2004, 6, 2849). The structure with O5 trans with respect to H6a (O(t)) is about 2 kcal/mol less stable in vacuo than that with one of the H6 trans to it (H(t)); in aqueous solution its energy gap is nearly conserved. The in-in arrangement of the hydroxyl groups of erybraedin turns out to be preferred in vacuo (even considering zero point and thermal effects), where pseudo H-bonds are formed between hydroxy hydrogens and pi electron distributions of prenyl groups. The continuum solvent effect (water) at the IEF-PCM/B3LYP/6-31G level on the relative stability of the various rotamers is very limited both on bitucarpin and erybraedin. Considering the dihydrated derivatives, significant differences in the solvation energy are found between the distinct hydration sites, increasing in the order: methoxy O, ring O, hydroxy O, and hydroxy H. In hydroxy-water interactions, in fact, water prefers to behave as an H-bond acceptor unless nearby bulky groups prevent its approach. Interestingly enough, a bridging water molecule between the hydroxy H of erybraedin and the prenyl group can be found. The inclusion of BSSE corrections in hydroxy-water interactions decidedly favors out-out hydrated arrangements, followed by out-in and in-out ones. Bulk solvent effects with IEF-PCM about the dihydrated systems almost invert the stability order found in vacuo. When a four-water cluster is considered using QM methods, waters gather in H-bonded pairs around the solute OH groups. MD simulations, carried out on a pterocarpan solute (J. Phys. Chem. B 2005, 109, 16918), supply water adducts consistent with a liquid state that have also been embedded in the continuum solvent.  相似文献   

18.
Fedorowicz  A.  Koll  A.  Mavri  J. 《Theoretical chemistry accounts》2003,109(4):220-228
 Molecular dynamics thermodynamic integration (MDTI) method and quantum chemical calculations at the density functional theory B3LYP 6-31+(d,p) level, which included the Tomasi model of the solvent reaction field, were applied to study the tautomeric equilibrium of Mannich base in methanol solution. The values obtained for the free-energy difference are in good agreement with experimental data. However, the results from quantum mechanical calculations were not as good as the results of MDTI simulations owing to inappropriate treatment of intermolecular hydrogen bonds between the solute molecule and the first shell of solvent molecules in the Tomasi model of the solvent reaction field. The radial distribution functions between solute atoms and solvent atoms confirmed the formation of hydrogen bonds between the solute molecule and surrounding methanol molecules and indicated that the zwitterionic form is associated more with an organized solvent structure at the level of the first solvation shell than is the molecular form. Received: 26 April 2002 / Accepted: 9 September 2002 / Published online: 31 March 2003  相似文献   

19.
The equilibrium geometric configurations of the enzyme-substrate complex for guanosine triphosphate hydrolysis by elongation factor EF-Tu calculated using two theoretical approaches, a combined quantum mechanics/molecular mechanics (QM/MM) method and a molecular dynamics method, are compared. The reaction complex geometry determined by the QM/MM method is consistent with the accepted reaction mechanism, whereas, in the enzyme-substrate structure predicted by the molecular dynamics method with the CHARMM force field, the relative positions of the nucleophilic reagent (water molecules) and the base (a histidine side chain) do not correspond to the optimal reagent arrangement.  相似文献   

20.
Quantum chemical solvation models usually rely on the equilibrium solvation condition and is thus not immediately applicable to the study of nonequilibrium solvation dynamics, particularly those associated with chemical reactions. Here we address this problem by considering an effective Hamiltonian for solution-phase reactions based on an electrostatic potential (ESP) representation of solvent dynamics. In this approach a general ESP field of solvent is employed as collective solvent coordinate, and an effective Hamiltonian is constructed by treating both solute geometry and solvent ESP as dynamical variables. A harmonic bath is then attached onto the ESP variables in order to account for the stochastic nature of solvent dynamics. As an illustration we apply the above method to the proton transfer of a substituted phenol-amine complex in a polar solvent. The effective Hamiltonian is constructed by means of the reference interaction site model self-consistent field method (i.e., a type of quantum chemical solvation model), and a mixed quantum/classical simulation is performed in the space of solute geometry and solvent ESP. The results suggest that important dynamical features of proton transfer in solution can be captured by the present approach, including spontaneous fluctuations of solvent ESP that drives the proton from reactant to product potential wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号