首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
亲和色谱仿生配基的筛选和设计   总被引:1,自引:0,他引:1  
任军  贾凌云 《分析化学》2005,33(9):1345-1349
利用选择性好、稳定性高、价格低廉的仿生配基作为亲和色谱的功能基团,实现对目的蛋白质的亲和分离,可以弥补常规的单克隆抗体和其他天然蛋白质配基在价格、稳定性方面的不足,从而拓展亲和色谱技术的应用范围。本文综述了亲和色谱仿生配基在筛选和设计方面的研究进展,重点介绍了组合方法和基于结构的仿生配基的设计及其应用。  相似文献   

2.
New ligands for a variety of biological targets can be selected from biological or synthetic combinatorial peptide libraries. The use of different libraries to select novel peptides with potential therapeutic applications is reviewed. The possible combination of molecular diversity provided by combinatorial libraries and a rational approach derived from computational modeling is also considered. Advantages and disadvantages of different approaches are compared. Possible strategies to bypass loss of peptide bioactivity in the transition from ligand selection to in vivo use are discussed.  相似文献   

3.
Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre‐established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side‐by‐side comparison is also presented.  相似文献   

4.
Affinity adsorbents based on immobilized triazine dyes offer important advantages circumventing many of the problems associated with biological ligands. The main drawback of dyes is their moderate selectivity for proteins. Rational attempts to tackle this problem are realized through the biomimetic dye concept according to which new dyes, the biomimetic dyes, are designed to mimic natural ligands. Biomimetic dyes are expected to exhibit increased affinity and purifying ability for the targeted proteins. Biocomputing offers a powerful approach to biomimetic ligand design. The successful exploitation of contemporary computational techniques in molecular design requires the knowledge of the three-dimensional structure of the target protein, or at least, the amino acid sequence of the target protein and the three-dimensional structure of a highly homologous protein. From such information one can then design, on a graphics workstation, the model of the protein and also a number of suitable synthetic ligands which mimic natural biological ligands of the protein. There are several examples of enzyme purifications (trypsin, urokinase, kallikrein, alkaline phosphatase, malate dehydrogenase, formate dehydrogenase, oxaloacetate decarboxylase and lactate dehydrogenase) where synthetic biomimetic dyes have been used successfully as affinity chromatography tools.  相似文献   

5.
亲和色谱中配基的筛选与应用   总被引:1,自引:0,他引:1  
赵睿  刘国诠 《色谱》2007,25(2):135-141
亲和配基的选择与筛选是发展新的亲和色谱填料或构建一个新的亲和色谱体系所必须解决的首要问题。该文结合作者所在实验室的工作,对配基的选择、筛选与应用方面的一些进展进行了简要评述。作者所在实验室针对特定蛋白质和多肽的多肽亲和配基的筛选,开展了反义肽简并性的研究,发展了基于反义肽的组合化学筛选新方法。与常规的组合合成法相比,该方法简单、快捷、有效,极大地减小了合成和筛选的工作量,降低了筛选后亲和组分结构鉴定的难度。所建立的筛选策略已应用于流感病毒、严重急性呼吸道综合征(SARS)病毒亲和抑制剂的筛选和用于人β-干扰素测定的石英晶体微天平(QCM)生物传感器的构建,均取得了有意义的结果。  相似文献   

6.
D. J. Hammond 《Chromatographia》1998,47(7-8):475-476
Summary Combinatorial peptide libraries may be screened to identify novel ligands for use in the affinity purification of proteins. Strategies for the screening of libraries are summarized and characterization of the interaction of a particular target protein (fibrinogen) with a ligand (FLLVPL) is described. Factors important for implementing an affinity resin in a production environment are highlighted. Presented at: Affinity Chromatography Conference, Cambridge, UK, July 1–3, 1997.  相似文献   

7.
Affinity selection-mass spectrometry (AS-MS) is a sensitive technology for identifying small molecules that bind to target proteins, and assays enabled by AS-MS can be used to delineate relative binding affinities of ligands for proteins. 'Indirect' AS-MS assays employ size-exclusion techniques to separate target-ligand complexes from unbound ligands, and target-associated ligands are then specifically detected by liquid chromatography mass spectrometry. We report how indirect AS-MS binding assays with known reference control compounds were used as guideposts for development of an optimized purification method for CXCR4, a G-protein coupled chemokine receptor, for which we sought novel antagonists. The CXCR4 purification method that was developed was amenable to scale-up and enabled the screening of purified recombinant human CXCR4 against a large combinatorial library of small molecules by high throughput indirect AS-MS. The screen resulted in the discovery of new ligands that competed off binding of reference compounds to CXCR4 in AS-MS binding assays and that antagonized SDF1α-triggered responses and CXCR4-mediated HIV1 viral uptake in cell-based assays. This report provides a methodological paradigm whereby indirect AS-MS-based ligand binding assays may be used to guide optimal integral membrane protein purification methods that enable downstream affinity selection-based applications such as high throughput AS-MS screens.  相似文献   

8.
Affinity chromatography is the most selective chromatographic method for the purification of biologically active materials. It is based on the biospecific interaction of the substrates with a ligand, which is chemically immobilized onto a suitable matrix (support). Different matrices provided by natural and synthetic polymers are used for the preparation of affinity supports. In this communication we describe and compare the properties of various supports based on polysaccharides, polyacrylamides and inorganic materials. In particular, we discuss the utility of different silica derivatives (especially primary hydroxyl silica) for the immobilization of ligands and high-performance affinity chromatography.  相似文献   

9.
Affinity adsorbents comprising monodisperse spherical synthetic macroporous beads offer the prospect of high-capacity, high-resolution separation of proteins at low operating pressures. Purpose-designed biomimetic dyes were covalently attached to Dynospheres XP-3507 beads and exploited for the purification of calf intestine alkaline phosphatase and human urine urokinase from crude extracts. This study demonstrates that the combination of specifically designed affinity ligands with monosized support materials is a powerful approach to the resolution of proteins by high-performance affinity chromatography.  相似文献   

10.
The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.  相似文献   

11.
The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological‐based specificity of the biomolecule–ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye‐affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α‐chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N‐hexyl pendant chain, with a ligand density of 1.8 × 10?2 mmol of dye/g of chromatographic support, to isolate lysozyme, α‐chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α‐chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Affinity chromatography with Protein A beads has become the conventional unit operation for the primary capture of monoclonal antibodies. However, Protein A activated supports are expensive and ligand leakage is an issue to be considered. In addition, the limited production capabilities of the chromatographic process drive the research towards feasible alternatives. The use of synthetic ligands as Protein A substitutes has been considered in this work. Synthetic ligands, that mimic the interaction between Protein A and the constant fragment (Fc) of immunoglobulins, have been immobilized on cellulosic membrane supports. The resulting affinity membranes have been experimentally characterized with pure immunoglobulin G (IgG). The effects of the membrane support and of the spacer arm on the ligand–ligate interaction have been studied in detail. Experimental data have been compared with molecular dynamic simulations with the aim of better understanding the interaction mechanisms. Molecular dynamic simulations were performed in explicit water, modelling the membrane as a matrix of overlapped glucopyranose units. Electrostatic charges of the ligand and spacer were calculated through ab initio methods to complete the force field used to model the membrane. The simulations enabled to elucidate how the interactions of surface, spacer and ligand with IgG, contribute to the formation of the bond between protein and affinity membrane.  相似文献   

13.
Affinity chromatography has become one of the most important tools available to the biochemist for the selective isolation and purification of- interesting biological macromolecules. pioneering work of Porath [1,2] and subsequent developmental work by Porath [33 and Cuatrecasas 141 have served as practical guides for the successful application of affinity chromatography in many The areas of biochemical research. Specific ligands can be covalently attached to an insoluble, stationary support such as agarose or polyacrylamide beads and used to “fish out” those components which show an appreciable affinity for the ligands.  相似文献   

14.
亲和层析研究进展   总被引:15,自引:0,他引:15  
亲和层析具有高选择性,高活性回收率和高纯度等特点,已成为纯化蛋白质等生物大分子最有效的技术之一,本文综述了亲和层析的类型,配基的种类,选择方法以及亲和层技术的最新研究进展,重点介绍了多肽作为亲和配基的制备及筛选方法及其在生物大分了职的应用,并比较了不同亲和层析方法的优缺点及其发展趋势。  相似文献   

15.
The synthesis of allylic amine libraries derived from olefin templates is described. The two-step, solution phase reaction sequence consists of amination of the template followed by Suzuki coupling and expedited purification via ion exchange chromatography. The methodology has been used to synthesize a 1344-member allylic amine library.  相似文献   

16.
Small molecules that induce or stabilize the association of macromolecules have proven to be useful effectors of a wide variety of biological processes. To date, all examples of such chemical inducers of dimerization have involved known ligands to well-characterized proteins. The generality of this approach could be broadened by enabling the discovery of heterodimerizers that target known macromolecules having no established ligand, or heterodimerizers that produce a novel biologic response in screens having no predetermined macromolecular target. Toward this end, we report the construction of a diversified library of synthetic heterodimerizers consisting of an invariant ligand that targets the FK506-binding protein (AP1867) attached to 320 substituted tetrahydrooxazepines (THOXs). The THOX components were generated by a combination of liquid- and solid-phase procedures employing sequential Mitsonobu displacements to join two structurally diversified olefin-containing monomers, followed by ruthenium-mediated olefin metathesis to effect closure of the seven-membered ring. The 320 resin-bound THOX ligands were coupled in parallel to AP1867, and the products were released from the resin to yield candidate heterodimerizers in sufficient yield and purity to be used directly in biologic testing. A representative panel of 25 candidate heterodimerizers were tested for their ability to pass through the membrane of human fibrosarcoma cells, and all were found to possess activity in this tissue culture system. These studies pave the way for further studies aimed at using small-molecule inducers of heterodimerization to effect novel biological responses in intact cells.  相似文献   

17.
亲和色谱纯化蛋白质新进展   总被引:6,自引:2,他引:4  
韩金玉  那平  元英进 《色谱》1996,14(6):447-450
通过对35篇文献的综述,介绍了亲和色谱技术的新进展  相似文献   

18.
In the demanding field of proteomics, there is an urgent need for affinity-catcher molecules to implement effective and high throughput methods for analysing the human proteome or parts of it. Antibodies have an essential role in this endeavour, and selection, isolation and characterisation of specific antibodies represent a key issue to meet success. Alternatively, it is expected that new, well-characterised affinity reagents generated in rapid and cost-effective manners will also be used to facilitate the deciphering of the function, location and interactions of the high number of encoded protein products. Combinatorial approaches combined with high throughput screening (HTS) technologies have become essential for the generation and identification of robust affinity reagents from biological combinatorial libraries and the lead discovery of active/mimic molecules in large chemical libraries. Phage and yeast display provide the means for engineering a multitude of antibody-like molecules against any desired antigen. The construction of peptide libraries is commonly used for the identification and characterisation of ligand-receptor specific interactions, and the search for novel ligands for protein purification. Further improvement of chemical and biological resistance of affinity ligands encouraged the "intelligent" design and synthesis of chemical libraries of low-molecular-weight bio-inspired mimic compounds. No matter what the ligand source, selection and characterisation of leads is a most relevant task. Immunological assays, in microtiter plates, biosensors or microarrays, are a biological tool of inestimable value for the iterative screening of combinatorial ligand libraries for tailored specificities, and improved affinities. Particularly, enzyme-linked immunosorbent assays are frequently the method of choice in a large number of screening strategies, for both biological and chemical libraries.  相似文献   

19.
抗体纯化中亲和色谱配体的研究进展   总被引:2,自引:0,他引:2  
亲和色谱是用于抗体纯化的有效方法,本文对亲和色谱配体的研究进展进行了综述.  相似文献   

20.
BACKGROUND: Combinatorial methods for the production of molecular libraries are an important source of ligand diversity for chemical biology. Synthetic methods focus on the production of small molecules that must traverse the cell membrane to elicit a response. Genetic methods enable intracellular ligand production, but products must typically be large molecules in order to withstand cellular catabolism. Here we describe an intein-based approach to biosynthesis of backbone cyclic peptide libraries that combines the strengths of synthetic and genetic methods. RESULTS: Through site-directed mutagenesis we show that the DnaE intein from Synechocystis sp. PCC6803 is very promiscuous with respect to peptide substrate composition, and can generate cyclic products ranging from four to nine amino acids. Libraries with five variable amino acids and either one or four fixed residues were prepared, yielding between 10(7) and 10(8) transformants. The majority of randomly selected clones from each library gave cyclic products. CONCLUSIONS: We have developed a versatile method for producing intracellular libraries of small, stable cyclic peptides. Genetic encoding enables facile manipulation of vast numbers of compounds, while low molecular weight ensures ready pharmacophore identification. The demonstrated flexibility of the method towards both peptide length and composition makes it a valuable addition to existing methods for generating ligand diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号