首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

2.
The formation of complexes between cationic polymeric micelles of PS-b-PQ2VP amphiphilic block copolymers and DNA molecules in aqueous solutions is investigated at pH = 7. The physicochemical characteristics of the "polyplexes" at different DNA/polymer ratios were characterized in terms of mass, size and charge using static, dynamic and electrophoretic light scattering and AFM. The complexes are spherical and assume their maximum size and mass around the charge stoichiometric ratio. After addition of increased amounts of salt in the solutions, partial dissociation of the systems was observed. The present systems can be considered as mimetics of histone/DNA complexes formed under physiological conditions in living cells.  相似文献   

3.
A computational procedure is presented to quantify the order achieved in assembled block copolymer films when no disruptive defects are present (i.e., dislocations or disclinations). Both simulated and real systems were used to show that sub‐nm variation in the domain position, as well as the corresponding reciprocal lattice vectors, can reduce the accuracy in the quantification of the order of the system. The computational procedure in this work was based on fitting to the measured spatial location of the domain centroids, and incorporated a tolerance factor to account for domain position variation. The procedure was used to analyze the translational and orientational order parameters of block copolymer films assembled on a chemical pattern as well as their corresponding autocorrelation functions. The procedure was applied to a patterned substrate during three stages of a template forming process: an e‐beamed patterned photoresist, the domains of a block copolymer directed to assemble on this pattern, and the underlying structure after lift‐off. Use of the procedure demonstrated that the order of the block copolymer film could be retained in subsequent processing of the underlying template. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

4.
5.
We present an improved algorithm of the self‐consistent mean‐field implementation that has been recently proposed for the calculation of block copolymer self‐assembly. Without requiring prior knowledge of the symmetry of the mesophase segregation, the algorithm is numerically stable and significantly faster than previously proposed methods. These advantages provide a valuable tool for combinatorial screening of novel stable and metastable structural phases of block copolymers. We apply the method and demonstrate complex mesophases in linear, asymmetric triblock copolymer melts. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1777–1783, 2002  相似文献   

6.
Block copolymer vesicles can be prepared in solution from a variety of different amphiphilic systems. Polystyrene‐block‐poly(acrylic acid), polystyrene‐block‐poly(ethylene oxide), and many other block copolymer systems can produce vesicles of a wide range of sizes; those in the range of 100–1000 nm have been explored extensively. Different factors, such as the absolute and relative block lengths, the presence of additives (ions, homopolymers, and surfactants), the water content in the solvent mixture, the nature and composition of the solvent, the temperature, and the polydispersity of the hydrophilic block, provide control over the types of vesicles produced. Their high stability, resistance to many external stimuli, and ability to package both hydrophilic and hydrophobic compounds make them excellent candidates for use in the medical, pharmaceutical, and environmental fields. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 923–938, 2004  相似文献   

7.
Cell membranes are essential barriers in Nature. To understand their properties and functions and to develop desirable applications, a simple and elegant approach is to study membranes that mimic the cell membrane. Lipid bilayers represent simple models that are physiologically representative when in the form of mixtures of various lipids, but they are not adequately stable even when covered with amphipathic proteins or when combined with polymers, thus preventing technological applications. This makes necessary the design of completely synthetic membranes. In this respect, amphiphilic copolymers that self‐assemble under dilute aqueous conditions and generate supramolecular polymer vesicles or films are ideal candidates for synthetic membranes. Their versatility in terms of chemistry and properties (permeability, mechanical stability, thickness), if appropriately designed, enable the insertion of biological molecules, such as membrane proteins and biopores, or the attachment of biomolecules at their surfaces. Here, we present the domain of synthetic membranes based on amphiphilic copolymers beginning with their generation and up to their applications in medicine, the food industry, and technology. Even though significant progress has been made in combining them with membrane proteins, open questions remain with respect to desired properties that could accommodate biological molecules and support further development of the field, from both the point of view of fundamental understanding and of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Preparation of functional domains with a spacing of 10 nm is a benchmark set to fabricate next‐generation electronic devices. Organic–inorganic block copolymers form well‐ordered microphase separations with very small domain sizes. The design and preparation of a novel block copolymer consisting of syndiotactic polymethyl methacrylate (st‐PMMA) and polyhedral oligomeric silsesquioxane (POSS)‐functionalized polymethacrylate, designated as st‐PMMA‐b‐PMAPOSS, which can recognize functional molecules, are reported. The st‐PMMA segments form a helical structure and encapsulate C60 in the helical nanocavity, leading to the formation of an inclusion complex. Although the ordering of the domains is not high, C60 domains that are in a quasi‐equilibrium state, with about 10‐nm domain spacings, are generated using st‐PMMA‐b‐PMAPOSS that can recognize functional molecules. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2181–2189  相似文献   

9.
10.
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603  相似文献   

11.
12.
Surface coatings were prepared from semifluorinated monodendron surface‐active block copolymers (SABC) and a thermoplastic elastomer (TPE) [poly(styrene‐b‐ethylene butylene‐b‐styrene)] by either spin‐casting a bilayer structure or by blending. The surface of these coatings was characterized by contact angle measurements, scanning force microscopy (SFM) and near‐edge X‐ray absorption fine structure (NEXAFS) methods. Both bilayers and blends resulted in very low energy surfaces under the right processing conditions and the liquid crystallinity of the semifluorinated monodendrons gave rise to temporally stable, non‐reconstructing surfaces in water. However for small thicknesses of the SABC top layer or for low SABC content blends, SFM shows islands of the fluorinated block of the SABC and incomplete surface coverage of the TPE, an observation confirmed by NEXAFS analysis. Very high water contact angles were produced by even modest amounts of SABC in either case but to achieve low contact angle hysteresis, it was necessary to produce uniform surface coverage by the SABC. Such uniform coverage can be accomplished by spin casting a top layer of SABC as thin as 60 nm in the bilayer case but at least 10 wt% SABC in TPE combined with drop casting of a hot solutions is needed for the blends to achieve equivalent surface structure and properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 411–420, 2004  相似文献   

13.
We present an approach to the synthesis of biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization; these nanoparticles may serve as novel scaffolds for the multivalent display of ligands. The nanoparticles are formed by the self‐assembly of diblock copolymers composed of a hydrophobic block and a hydrophilic activated block that can be functionalized with thiolated ligands in aqueous media. The activated block enables control over the orientation of the displayed ligands, which may be sugars, peptides, or proteins engineered to contain cysteine residues at suitable locations. The nanoparticle diameter can be varied over a wide range through changes in the composition of the block copolymer, and biofunctionalization of the nanoparticles has been demonstrated by the attachment of a peptide previously shown to inhibit the assembly of anthrax toxin. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 928–939, 2006  相似文献   

14.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
16.
17.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

18.
19.
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757  相似文献   

20.
We have demonstrated directed self‐assembly of poly(styrene‐b‐dimethylsiloxiane) (PS‐b‐PDMS) down to sub‐10‐nm half‐pitch by using grating Si substrate coated with PDMS. The strong segregation between PS and PDMS enables us to direct the self‐assembly in wide grooves of the grating substrate up to 500 nm in width. This process can be applied to form various type of sub‐10‐nm stripe pattern along variety of grating shape. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号