首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial stage of the development of a wall jet under the influence of strong external turbulence has been studied in a novel shear-flow mixing-box experiment. A fully developed channel flow of depth h (40 mm) enters along the top wall of a cuboidal box of height 11 h in which a combination of oscillatory and turbulent velocity fluctuations are generated by a vertical oscillating grid at the midplane 5 h below the wall. When the ratio of the rms grid-generated velocity fluctuations, , to the local mean velocity inside the wall jet layer, u, is greater than about 0.1, significant changes are observed in the mean shear profile and in the eddy structure of the wall jet. The wall jet thickness increases by approximately 25% but the maximum velocity decreases by less than 10% compared to the case without the external turbulence. Fluctuations of the streamwise velocity component increase as expected in the outer part of the wall jet, but the most significant result is the increase by 70% of the fluctuations in the boundary layer close to the wall. CFD simulations using the k-ɛ RNG of the FLUENT CFD Code do not properly model the effect of the large scale external turbulence in this experiment. However, an artificial method, which introduces a series of small inlet/outlet jets to represent external turbulence, approximately simulates the overall effects of the oscillating grid on the wall jet, but does not simulate the amplification of the near wall turbulence. F. T. M. Nieuwstadt: Rest in peace (1946–2005).  相似文献   

2.
The purpose of thiswork is to introduce a complete and general one-equation model capable of correctly predicting a wide class of fundamental turbulent flows like boundary layer, wake, jet, and vortical flows. The starting point is the mature and validated two-equation k−ω turbulence model of Wilcox. The newly derived one-equation model has several advantages and yields better predictions than the Spalart-Allmaras model for jet and vortical flows while retaining the same efficiency and quality of the results for near-wall turbulent flows without using a wall distance. The derivation and validation of the new model using findings computed by the Spalart-Allmaras and the k−ω models are presented and discussed for several free shear and wall-bounded flows.  相似文献   

3.
The flow and temperature fields of a turbulent impinging jet are rather complex. In order to accurately describe the flow and heat-transfer process, two important factors that must be taken into account are the turbulence model and the wall function. Several turbulence models, including κ–? turbulence models, κ–ω turbulence models, low-Re turbulence models, the κ–κl–ω turbulence model, the Transition SST turbulence model, the V2F turbulence model and the RSM turbulence model, are examined and compared to experimental data. Furthermore, for the near wall region, various wall functions are presented for comparison and they include the standard wall function, the scale wall function, the non-equilibrium wall function and the enhanced wall function. The distribution features of velocity, turbulent kinetic energy and Nusselt number are determined in order to provide a reliable reference for the multiphase impinging jet in the future.  相似文献   

4.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We present a generalised treatment of the wall boundary conditions for RANS computation of turbulent flows and heat transfer. The method blends the integration up to the wall (ItW) with the generalised wall functions (GWF) that include non-equilibrium effects. Wall boundary condition can thus be defined irrespective of whether the wall-nearest grid point lies within the viscous sublayer, in the buffer zone, or in the fully turbulent region. The computations with fine and coarse meshes of a steady and pulsating flow in a plane channel, in flow behind a backward-facing step and in a round impinging jet using the proposed compound wall treatment (CWT) are all in satisfactory agreement with the available experiments and DNS data. The method is recommended for computations of industrial flows in complex domains where it is difficult to generate a computational grid that will satisfy a priori either the ItW or WF prerequisites.  相似文献   

6.
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results.  相似文献   

7.
Although turbulent jets have been studied extensively, one configuration that has not received much attention is the viscosity-stratified jet, wherein a turbulent jet of lower viscosity issues into a density-matched host liquid of higher viscosity. We present experimental data for scalar dispersion and two-dimensional velocity measurements in the axial plane of a turbulent axisymmetric jet with a Reynolds number (Re) of 2,000 issuing into a viscous host liquid at viscosity ratios (m) ranging from 1 to 55. The presence of a strong viscosity discontinuity across the jet edge results in a significant decrease in the scalar spread rate. We attribute this to the rapid reduction in turbulence intensity and the suppression of large engulfing eddies at the jet edge. The velocity profile, on the other hand, indicates that the velocity width and mass flux reduce with increasing m up to about 20, but then increase for higher values of m. This non-monotonic variation is explained by the growing influence of viscous stress for m>20. The scalar spread rate, the velocity spread rate, the centerline velocity decay rate, and the jet mass flux are all minimized for m20 for Re=2,000.
Ajay K. PrasadEmail:
  相似文献   

8.
The paper presents numerical predictions of a turbulent axisymmetric jet impinging onto a porous plate, based on a finite volume method of solving the Navier-Stokes equations for an incompressible air jet with the K–ε turbulence model. The velocity and pressure terms of the momentum equations are solved by the SIMPLE (semi-implicit method for pressure-linked equation) method. In this study, non-uniform staggered grids are used. The parameters of interest include the nozzle-to-wall distance and the suction velocity. The results of the present calculations are compared with available data reported in the literature. It is found that suction effects reduce the boundary layer thickness and increase the velocity gradient near the wall.  相似文献   

9.
Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.  相似文献   

10.
11.
Hybrid Reynolds Averaged Navier Stokes–Large Eddy Simulation is a trend which is becoming of common use in aerodynamics but has seldom been employed to simulate reactive flows. Such methods, like the Delayed Detached Eddy Simulation (DDES) presented in this article, have been created to treat near wall flows with a RANS approach while switching to LES in the separated flow region. It is indeed an affordable solution to simulate complex and unsteady compressible flows and to have access to accurate skin friction and wall thermal fluxes. In order to validate this technique in combustion, we chose a simple and well documented Backward Facing Step combustor. To account for turbulent combustion a Dynamic Thickened Flame was used. The results obtained on this case show a good agreement with the experimental database and are of the same quality as LES in the separated region for both inert and reactive flows. To cite this article: B. Sainte-Rose et al., C. R. Mecanique 337 (2009).  相似文献   

12.
The standard k–ε eddy viscosity model of turbulence in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent axisymmetric jet impinging within a semi-confined space. A single geometry with a Reynolds number of 20,000 and a nozzle-to-plate spacing of two diameters has been considered with inlet boundary conditions based on measured profiles of velocity and turbulence. Velocity, turbulence and heat transfer data have been obtained using laser–Doppler anemometry and liquid crystal thermography respectively. In the developing wall jet, numerical results of heat transfer compare to within 20% of experiment where isotropy prevails and the trends in turbulent kinetic energy are predicted. However, stagnation point heat transfer is overpredicted by about 300%, which is attributed directly to the turbulence model and inapplicability of the wall function.  相似文献   

13.
The paper explores the possibilities that different turbulence closures offer, for in‐depth analysis of a complex flow. The case under investigation is steady, turbulent flow in a pipe with sudden expansion without/with normal‐to‐wall injection through jets. This is a typical geometry where generation of turbulence energy takes place, due to sudden change in boundary conditions. This study is aimed at investigating the capability of a developed computational program by the present authors with three different turbulence models to calculate the mean flow variables. Three two‐equation models are implemented, namely the standard linear k ? ε model, the low Reynolds number k ? ε model and the cubic nonlinear eddy viscosity (NLEV) k ? ε model. The performance of the chosen turbulence models is investigated with regard to the available data in the literature including velocity profiles, turbulent kinetic energy and reattachment position in a pipe expansion. In order to further assess the reliability of the turbulence models, an experimental program was conducted by the present authors also at the fluid mechanics laboratory of Menoufiya University. Preliminary measurements, including the surface pressure along the two walls of the expansion pipe and the pressure drop without and with the presence of different arrangements of wall jets produced by symmetrical or asymmetrical fluid cross‐flow injection, are introduced. The results of the present studies demonstrate the superiority of the cubic NLEV k ? ε model in predicting the flow characteristics over the entire domain. The simple low Reynolds number k ? ε model also gives good prediction, especially when the reattachment point is concerned. The evaluation of the reattachment point and the pressure‐loss coefficient is numerically addressed in the paper using the cubic NLEV k ? ε model. The results show that the injection location can control the performance of the pipe‐expansion system. It is concluded that the introduction of flow injection can increase the energy loss in the pipe expansion. The near‐field turbulence structure is also considered in the present study and it is noticed that the turbulence level is strongly affected by the cross‐flow injection and the jet location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A Lagrangian framework is set out to describe turbulent non-premixed combustion in high speed coflowing jet flows. The final aim is to provide a robust computational methodology to simulate, in various conditions, the underexpanded GH2/GO2 torch jet that is used to initiate combustion in an expander cycle engine. The proposed approach relies on an early modelling proposal of Borghi and his coworkers. The model is well suited to describe finite rate chemistry effects and its recent extension to high speed flows allows one to take the influence of viscous dissipation phenomena into account. Indeed, since the chemical source terms are highly temperature sensitive, the influence of viscous phenomena on the thermal runaway is likely to be all the more pronounced since the Mach number values are high. The validation of the extended model has been recently performed through the numerical simulation of two distinct well-documented experimental databases. Only a brief summary of this preliminary validation step is provided here. The main purpose of the present work is to proceed with the numerical simulation of geometries that bring together the essential peculiarities of the underexpanded GH2/GO2 torch. The behavior of the corresponding supersonic coflowing jet flames for various conditions is discussed in the light of computational results. To cite this article: J.-F. Izard, A. Mura, C. R. Mecanique 337 (2009).  相似文献   

16.
Large eddy simulations are performed for an unsteady flow and heat transfer in the region of interaction of a circular turbulent jet with a normally positioned flat obstacle (target). Space-filtered Navier-Stokes equations are closed by the RNG model of eddy viscosity, which takes into account the curvature of streamlines in the region of flow turning. The computations are performed for different dimensionless distances between the nozzle exit and the target and for different Reynolds numbers. The dependence between the Nusselt number distribution over the target surface and the vortex structure of the jet is analyzed. The local and integral characteristics of the flow are compared with the data of a physical experiment. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 55–67, January–February, 2007.  相似文献   

17.
Measurements of mean velocity components, turbulent intensity, and Reynolds shear stress are presented in a turbulent lifted H2/N2 jet flame as well as non-reacting air jet issuing into a vitiated co-flow by laser doppler velocimetry (LDV) technique. The objectives of this paper are to obtain a velocity data base missing in the previous experiment data of the Dibble burner and so provide initial and flow field data for evaluating the validity of various numerical codes describing the turbulent partially premixed flames on this burner. It is found that the potential core is shortened due to the high ratio of jet density to co-flow density in the non-reacting cases. However, the existence of flame suppressed turbulence in the upstream region of the jet dominates the length of potential core in the reacting cases. At the centreline, the normalized axial velocities in the reacting cases are higher than the non-reacting cases, and the relative turbulent intensities of the reacting flow are smaller than in the non-reacting flow, where a self-preserving behaviour for the relative turbulent intensities exists at the downstream region. The profiles of mean axial velocity in the lifted flame distribute between the non-reacting jet and non-premixed flame both in the axial and radial distributions. The radial distributions of turbulent kinetic energy in the lifted flames exhibit a change in distributions indicating the difference of stabilisation mechanisms of the two lifted flame. The experimental results presented will guide the development of an improved modelling for such flames.  相似文献   

18.
The interaction of homogeneous and isotropic turbulence with a shock wave is observed by solving the Reynolds-averaged Navier–Stokes equations with the k? turbulence model. All turbulent fluctuations are measured at the period of expansion in the turbulent field and during compression by the reflected shock on turbulent field, and it is observed that the longitudinal turbulent velocity fluctuation is enhanced more at the period of expansion due to incident shock wave movement far from the turbulent field. The amplification of the turbulent kinetic energy (TKE) level in the shock/turbulence interaction depends on the shock wave strength and the longitudinal velocity difference across the shock wave. On decreasing the longitudinal velocity difference across the shock, the turbulent kinetic energy (TKE) level is less amplified. The TKE level is amplified by the factor of 1.5–1.8 in the shock/turbulence interaction where the dissipation rate of TKE decreases in all cases of shock/turbulence interaction. After the shock/turbulence interaction, the turbulent dissipative-length scale is amplified slightly and the amplification of the length scales decreases when increasing the shock strength. To cite this article: M.A. Jinnah, K. Takayama, C. R. Mecanique 333 (2005).  相似文献   

19.
This paper describes a finite element implementation of an operator-splitting algorithm for solving transient/steady turbulent flows and presents solutions for the turbulent flow in an axisymmetric 180° narrowing bend, a benchmark problem dealt with at the 1994 WUA-CFD annual meeting. Three k–ϵ based models are used: the standard linear k–ϵ model, a non-linear k–ϵ model and an RNG k–ϵ model. Flow separation after the bend, as observed in the experiment, is predicted by the RNG model and by both the linear and non-linear k–ϵε models with van Driest mixing length wall functions. Good agreement with experimental data of pressure distribution on bending walls is obtained by the present numerical simulation. Results show that there is very little difference between the linear and non-linear k–ϵε models in terms of predicted velocity fields and that the non-linearities mainly affect the distribution of turbulent normal stress and pressure, in analogy to the effect of second-order viscoelastic fluid models on laminar flow. Both the linear and non-linear k–ϵε models fail to predict any flow separation if logarithmic wall functions are used.  相似文献   

20.
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder1 and followers2,3,4,5. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterised by Kolmogorov microscales. According t o this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become “Kolmogorov” eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As a n example, the concept is incorporated in the standard κ - εmodel which is then applied t o channel and boundary layer flows. Using appropriate boundary conditions (based on Kolmogorov behaviour of near-wall turbulence), there is no need for any wall-modification to the κ - ε equations (including model constants). Results compare very well with the DNS and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号