首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study experimentally the current-driven magnetic excitations in symmetric Co/Cu/Co nanopillars. In contrast with all the previous observations where the current of only one polarity is capable of exciting a multilayer system saturated by an externally applied magnetic field, we observe that both polarities of the applied current trigger excitations in a symmetric multilayer. This may indicate that in symmetric structures the current propels high-frequency magnetic oscillations in all magnetic layers. We argue, however, that only one layer is excited in our multilayers but, interestingly, currents of opposite polarities excite different layers. This hypothesis is supported by modeling the spin accumulation in symmetric magnetic multilayers.  相似文献   

2.
We study the passage of transverse current through a ferromagnetic nanojunctions, viz., a layered nanostructure of the spin-valve type containing two ferromagnetic layers separated by a spacer that prevents exchange coupling between the layers in the absence of current, but does not affect spin polarization of the current. The conditions for a high level of injection of spins by current are derived at which the concentration of injected nonequilibrium spins can reach or even exceed their equilibrium concentration. In such conditions, a number of new effects are observed. The threshold of exchange switching by current is lowered by several orders of magnitude due to matching of spin resistances of the layers. The application of an external magnetic field in the vicinity of the orientation phase transition additionally lowers this threshold. This leads to multistability, in which one value of the current corresponds to two (or more) stable noncollinear orientations of magnetization, and switching itself becomes irreversible. A methodical feature of this research is that the calculation is performed in the so-called macrospin approximation, which is in good agreement with most of known experiments. In this approximation, the equations of motion taking into account the torque as well as spin injection are derived for the first time and solved.  相似文献   

3.
A spin-current density-functional theory (SCDFT) is introduced, which takes into account the currents of the spin density and thus currents of the magnetization in addition to the electron density, the noncollinear spin density, and the density current, which are considered in standard current-spin-density-functional theory. An exact-exchange Kohn-Sham formalism based on SCDFT is presented, which represents a general framework for the treatment of magnetic and spin properties. As an illustration, an oxygen atom in a magnetic field is treated with the new approach.  相似文献   

4.
姜宏伟  王艾玲  郑鹉 《物理学报》2005,54(5):2338-2341
采用平面霍尔效应测量方法,对Ta(8nm)/NiFe(7nm)/Cu(24nm)/NiFe(44nm)/FeMn(14nm)/Ta(6nm)自旋阀多层膜进行了研究.结果表明,在样品中存在着自由层和被钉扎层之间的各向异性磁电阻的“混合”效应.与通常所采用的磁电阻测量方法相结合,平面霍尔效应的测 量可以给出自旋阀中各向异性磁电阻以及自由层和被钉扎层的磁矩随外场变化的更多信息. 关键词: 自旋阀 各向异性磁电阻 平面霍尔效应  相似文献   

5.
We present experimental evidence for a three-dimensional noncollinear antiferromagnetic spin structure in ultrathin single-crystalline fcc Fe50Mn50 layers using magnetic circular dichroism photoelectron emission microscopy and x-ray magnetic linear dichroism. Layer-resolved as-grown domain images of epitaxial trilayers grown on Cu(001) in which FeMn is sandwiched between ferromagnetic layers with different easy axes reveal the presence of antiferromagnetic spin components in the film plane and normal to the film plane. An FeMn spin structure with no collinear order in the film plane is consistent with the absence of x-ray magnetic linear dichroism in Fe L3 absorption in FeMn/Co bilayers.  相似文献   

6.
A theory, based on earlier work by Valet and Fert, is first presented to describe the influence of temperature on the perpendicular giant magnetoresistance (GMR) in multilayers. Then we present GMR measurements performed at T=77 K and at room temperature on Co/Cu multilayered nanowires with layer thicknesses ranging from a few nm to 1 μm. We use our model to obtain a good quantitative fit to the experimental results in both the short spin diffusion length limit and out of this limit. We discuss the temperature dependence of the bulk parameters, the scattering spin asymmetry coefficient and spin diffusion length in the Co layers. Received: 25 January 1998 / Accepted: 6 May 1998  相似文献   

7.
盛宇  张楠  王开友  马星桥 《物理学报》2018,67(11):117501-117501
利用氧化钽缓冲层对垂直各向异性钴铂多层膜磁性的影响,构想并验证了一种四态存储器单元.存储器器件包含两个区域,其中一区域的钴铂多层膜[Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)]直接生长在热氧化硅衬底上,另一个区域在磁性膜和衬底之间沉积了一层氧化钽作为缓冲层[TaO x(0.3 nm)/Pt(3 nm)/Co(0.47 nm)/Pt(1.5 nm)],缓冲层导致两个区域的垂直磁各向异性不同.在固定的水平磁场下对器件施加与磁场同向的电流,由于电流引起的自旋轨道耦合力矩,两个区域的磁化取向均会发生翻转,且拥有不同的临界翻转电流.改变通过器件导电通道的电流脉冲形式,器件的磁化状态可以在4个态之间切换.本文器件的结构为设计自旋轨道矩存储器件提供了新的思路.  相似文献   

8.
Using two-color optical coherence control techniques in intrinsic GaAs at 80 K with orthogonally polarized 70 fs, 1430 and 715 nm pulses, we generate a pure spin source current that yields a transverse Hall pure charge current; or alternatively, with parallel polarized pulses, we generate a pure charge source current that yields a pure spin current. By varying the relative phase or polarization of the incident pulses, one can effectively tune the type, magnitude and direction of both the source and transverse currents without application of electric or magnetic fields.  相似文献   

9.
The magnetization dynamics in magnetic double layers is affected by spin-pump and spin-sink effects. So far, only the spin pumping and its effect on the magnetic damping has been studied. However, due to conservation of angular momentum this spin current also leads to magnetic excitation of the layer dissipating this angular momentum. In this Letter we use time resolved magneto-optic Kerr effect to directly show the excitation due to the pure spin current. In particular, we observe magnetization dynamics due to transfer of angular momentum in magnetic double layers. In contrast to other experiments where a spin polarized charge current is passed through a nanomagnet, the effects discussed in this Letter are based on pure spin currents without net transfer of electric charge.  相似文献   

10.
By applying a local Rashba spin–orbit interaction to an individual quantum dot of a four-terminal four-quantum-dot ring and introducing a finite bias between the longitudinal terminals, we theoretically investigate the charge and spin currents in the transverse terminals. It is found that when the quantum dot levels are separate from the chemical potentials of the transverse terminals, notable pure spin currents appear in the transverse terminals with the same amplitude but opposite polarization directions. In addition, the polarization directions of such pure spin currents can be inverted by altering the structure parameters, i.e., the magnetic flux, the bias voltage, and the values of quantum dot levels with respect to the chemical potentials of the transverse terminals.  相似文献   

11.
Based on first-principles vector spin-density total-energy calculations of the magnetic and electronic structure of Cr and Mn transition-metal monolayers on the triangular lattice of a (111) oriented Cu surface, we propose for Mn a three-dimensional noncollinear spin structure on a two-dimensional triangular lattice as magnetic ground state. This new spin structure is a multiple spin-density wave of three row-wise antiferromagnetic spin states and comes about due to magnetic interactions beyond the nearest neighbors and due to higher order spin interactions (i.e., four spin). The magnetic ground state of Cr is a coplanar noncollinear periodic 120 degrees Néel structure.  相似文献   

12.
The high-frequency absorption of electromagnetic radiation in systems with a noncollinear spatial magnetization distribution has been calculated. A medium with a helicoidal magnetic structure and a superlattice whose period contains two layers with noncollinear magnetizations are considered. An additional absorption peak related to the electron transitions from one spin subband to another under the action of a variable linearly polarized electric field is shown to appear in such systems at frequencies near the spin splitting of the conduction band.  相似文献   

13.
Hirsch [Phys. Rev. Lett. 83, 1834 (1999)] recently proposed a spin Hall effect based on the anomalous scattering mechanism in the absence of spin-flip scattering. Since the anomalous scattering causes both anomalous currents and a finite spin-diffusion length, we derive the spin Hall effect in the presence of spin diffusion from a semiclassical Boltzmann equation. When the formulation is applied to certain metals and semiconductors, the magnitude of the spin Hall voltage due to the spin accumulation is found to be much larger than that of magnetic multilayers. An experiment is proposed to measure this spin Hall effect.  相似文献   

14.
The structural and magnetic properties of La/Fe multilayers were investigated by X-ray diffraction, RHEED, magnetometry and57Fe Mössbauer spectroscopy. Comparison is made with previous results obtained for Ce/Fe multilayers. Remarkably sharp interfaces are found, with roughness between 2 and 2.5 Å. The magnetic interface in the Fe sublayers resulting from the distribution of magnetic hyperfine fields distinctly exceeds the extension of the structural interface and points to a magnetic proximity effect. This is discussed in relation to a strong 3d-5d hybridization recently found in measurements of magnetic circular X-ray dichroism. Both the structural and magnetic La/Fe interface is less extended than the interface in Ce/Fe multilayers. Below a thickness of about 25 Å, the individual Fe layers grow in an amorphous structure on the La layers. In this case, Curie temperatures are below 200 K and the Fe-layer saturation magnetization is reduced up to 50%, and there is evidence of a non-collinear spin structure. It is argued that this mainly reflects the properties of pure amorphous Fe.  相似文献   

15.
The usefulness of Mössbauer spectroscopy for the investigation of magnetic multilayer systems is described. By applying 57Fe Mössbauer spectroscopy, the behavior of ultrathin magnetic layers, such as FCC-like Fe films on Cu(0 0 1), is studied. Position-specified (depth-selective) information is available by preparing samples in which monatomic 57Fe probe layers are placed at specific vertical positions, e.g. at interfaces or at the surface. As demonstrated for epitaxial chemically ordered Fe50Pt50 alloy films and polycrystalline nanostructured Tb/Fe multilayers, the Fe-spin structure can be determined directly, and a site-selective Fe-specific magnetic hysteresis loop can be traced in very-high-coercivity materials. For the studies of non-magnetic layers, on the other hand, hyperfine field observations by 197Au and 119Sn probes are worthwhile. Spin polarizations in Au layers penetrating from neighboring ferromagnetic 3D layers are estimated 197Au from Mössbauer spectra and are also studied by inserted 119Sn probes in Au/3D multilayers. In the Sn spectra for Cr/Sn multilayers, it was found that remarkably large spin polarization is penetrating into Sn layers from a contacting Cr layer, which suggests that Cr atoms in the surface layer have a ferromagnetic alignment.  相似文献   

16.
The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]2multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.  相似文献   

17.
The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes.  相似文献   

18.
We propose a torsional resonator that couples to the transverse spin dipole of an attached sample. The absence of relative motion eliminates a source of friction that would otherwise hinder nanoscale implementation. Enhanced spontaneous emission induced by the resonator relaxes the longitudinal spin dipole at a rate of ~1 s?1 in the low-temperature limit. With signal averaging, single-proton magnetic resonance spectroscopy appears feasible at ~10 mK and a high magnetic field, while single-shot sensitivity is practical for samples with at least tens of protons in a volume of ~5 nm3.  相似文献   

19.
Hyperfine fields at Fe and Mo layers in polyimide/Fe(10 nm)/[Mo(1.1 nm)/Fe(2.0 nm)]120 and [Mo(1.3 nm) /Fe(2.0 nm)]120 multilayers prepared by the electron-beam evaporation technique were measured at room-temperature by Mössbauer spectroscopy and perturbed-angular-correlation spectroscopy. The hyperfine fields in the Fe layers do not show a clear dependence on the Mo layer thickness. On the other hand, the hyperfine fields in the Mo layers show different magnetic structures in these samples. The difference suggests a variation of electron spin polarization in the Mo layers.  相似文献   

20.
We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noncollinear magnetic field effects, respectively. In the collinear magnetic field case,we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallelconfiguration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号