首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Lauhon LJ  Ho W 《Physical review letters》2000,85(21):4566-4569
Single hydrogen atoms were imaged on the Cu(001) surface by scanning tunneling microscopy (STM). The vibrations of individual H and D atoms against the surface were excited and detected by inelastic electron tunneling spectroscopy (STM-IETS). Variable temperature measurements of H atom diffusion showed a transition from thermally activated diffusion to quantum tunneling at 60 K. Regimes of phonon-assisted and electron-limited quantum tunneling were observed. The thermal diffusion rate of D atoms varied over 7 orders of magnitude between 80 and 50 K with no transition to quantum tunneling down to a thermal hopping rate of 4x10(-7) s(-1).  相似文献   

2.
Molecular nitrogen adsorption on single platinum and titanium nanoclusters is investigated by scanning tunneling microscopy and spectroscopy, including the use of an inverse scheme of spectroscopic measurements. Some regularities of the occurring processes are found.  相似文献   

3.
Methods and recipes used to establish potential energy surfaces in condensed molecular phases are discussed. The reliability of calculations is tested by confrontation with spectroscopic measurements in crystals. Optical spectroscopy, in particular, hole burning as a line-narrowing technique, as well as high resolution inelastic neutron scattering (INS), are used to resolve tunneling level structures corresponding to large-amplitude atomic and molecular motions. Rotational tunneling of methyl groups is discussed, and new measurements by INS are presented for crystals that are proposed as suitable candidates for optical studies. Translational tunneling in benzoic acid crystals and the role of promoting modes are reviewed, and new measurements of vibrational spectra by inelastic x-ray scattering are compared with INS and Raman spectra.  相似文献   

4.
Sub-Kelvin scanning tunneling spectroscopy in the Chevrel phases SnMo6S8 and PbMo6S8 reveals two distinct superconducting gaps with Δ1=3 meV, Δ2~1.0 meV and Δ1=3.1 meV, Δ2~1.4 meV, respectively. The gap distribution is strongly anisotropic, with Δ2 predominantly seen when scanning across unit-cell steps on the (001) sample surface. The spectra are well fitted by an anisotropic two-band BCS s-wave gap function. Our spectroscopic data are confirmed by electronic heat capacity measurements, which also provide evidence for a twin-gap scenario.  相似文献   

5.
The single-layered half-doped manganite La(0.5)Sr(1.5)MnO? (LSMO), was studied by means of the angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and resistivity measurements. STM revealed a smooth reconstruction-free surface; the density of states, extracted from photoemission and tunneling spectroscopy, is in agreement with transport measurements. The derived from ARPES Fermi surface (FS) nesting properties correspond to the known pattern of the charge-orbital ordering (COO), which implies that FS instability is related to the propensity to form a COO state in LSMO.  相似文献   

6.
Recently developed method of transient tunneling spectroscopy (TTS) is applied to investigate the tunneling dynamics of electrons from phosphorus atoms to the silicon conduction band. In contrast to the conventional constant-current spectroscopic tunneling techniques, in TTS one monitors the evolution of the tunneling process in time. Various difficulties, which may be encountered in the measurements of the tunneling time by TTS, are discussed and illustrated. The temperature dependence of the tunneling time for an isolated phosphorus atom is presented, and possible mechanisms responsible for the decrease of the tunneling time with the lattice temperature T, at T15 K, are discussed.  相似文献   

7.
Microscopic topological and spectroscopic properties of MBE-grown GaAs c(4×4) surfaces without and with monolayer Si deposition were investigated by the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Empty state STM images on as-grown surface showed bright and dark cells, and they exhibited strong correlation with the spatial distribution of normal and anomalous conductance gaps of the STS spectra. Bias dependent STM images indicated presence of pinning areas with continuous space and energy distribution of surface gap states. By deposition of monolayer Si, dark areas reduced a great deal and the rate of finding normal STS spectra increased, indicating large reduction of surface states.  相似文献   

8.
Scanning tunneling microscopy and scanning tunneling spectroscopy measurements have been performed on a single crystal of CeRu2 down to 2.2 K under a magnetic field up to 2.0 T. The sample surfaces for the measurements are prepared by cutting or cracking the single crystal at 4.2 K. The vortex lattice has been imaged by mapping the quasiparticle density of states at the Fermi energy on the surface. We have observed that the surface has been covered with microstructures a few nm in diameter. These microstructures are characteristic of the surface when the sample is cut or cracked at low temperature.  相似文献   

9.
We report on the characterization of sub-monolayers of pyrrole adsorbed on Ga-rich GaAs(001) surfaces. The interfaces were characterized by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) and reflectance anisotropy spectroscopy (RAS) in a spectral range between 1.5 and 8 eV. The adsorption of pyrrole on Ga-rich GaAs(001) modifies the RAS spectrum of the clean GaAs surface significantly at the surface transitions at 2.2 and 3.5 eV indicating a chemisorption of the molecules. By the help of transients at these surface transitions during the adsorption process, we were able to prepare different molecular coverages from a sub-monolayer up to a complete molecular layer. The different coverages of pyrrole were imaged by STM and electronically characterized by STS. The measurements reveal that the adsorbed molecules electronically insulate the surface and indicate the formation of new interface states around −3.5 and +4.2 eV. The RAS measurements in the UV region show new anisotropies in the spectral range of the optical transitions of the adsorbed pyrrole molecules. Our measurements demonstrate the potential of optical and electronic spectroscopy methods for the characterization of atomically thin molecular layers on semiconductor surfaces allowing a direct access to the properties of single adsorbed molecules.  相似文献   

10.
Low-temperature specific heat measurements and dielectric spectroscopy have been performed on polycrystalline and single-crystalline FeCr2S4, the single crystals showing a transition into a low-temperature orbital glass phase. The freezing of the orbital moments is revealed by a glasslike specific heat anomaly and by a clear relaxational behavior of the dielectric permittivity, exhibiting several hallmark features of glassy dynamics. The orbital relaxation dynamics continuously slows down over six decades in time, before at the lowest temperatures the glass transition becomes suppressed by quantum tunneling.  相似文献   

11.
Current-voltage measurements of metal-molecule-metal junctions formed from pi-conjugated thiols exhibit an inflection point on a plot of ln(I/V(2)) vs 1/V, consistent with a change in transport mechanism from direct tunneling to field emission. The transition voltage was found to scale linearly with the offset in energy between the Au Fermi level and the highest occupied molecular orbital as determined by ultraviolet photoelectron spectroscopy. Asymmetric voltage drops at the two metal-molecule interfaces cause the transition voltage to be dependent on bias polarity.  相似文献   

12.
Low temperature (down to 2.5 K) scanning tunneling microscopy (STM) and spectroscopy (STS) measurements are presented to assess the nature of the alpha-Sn/Ge(111) surface. Bias-dependent STM and STS measurements have been used to demonstrate that such a surface preserves a metallic 3 x 3 reconstruction at very low temperature. A tip-surface interaction mechanism becomes active below about 20 K at the alpha-Sn/Ge(111) surface, resulting in an apparent unbuckled (sqrt[3] x sqrt[3]) reconstruction when filled states STM images are acquired with tunneling currents higher than 0.2 nA.  相似文献   

13.
This article discusses the self assembly of conjugated thiol molecular wires on Au(111) substrates and their charge transport studied by scanning tunneling microscopy and spectroscopy. Molecular resolution imaging of the conjugated thiols show that differences in their structure and inter molecular interactions result in an ordering on gold that is different from the hexagonal symmetry found in alkanethiols. Tunneling spectroscopy on the molecular wires provides information about their intrinsic electronic properties such as the origin of the observed conductance gap and asymmetry in the I–Vs. Further by concurrent topographic and tunneling spectroscopic studies on a conjugated thiol molecule self assembled with and without molecular order, we show that packing and order determine the response of the monolayer to various competing interactions and that the presence of molecular order is very important for reproducible transport measurements. Competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability. This study points to the fact that molecular electronic devices should be designed to be tolerant to such fluctuations and dynamics. PACS 68.37.Ef; 73.63.-b; 81.16.Dn  相似文献   

14.
Thin films of La0.7Sr0.3MnO3 on MgO show a metal insulator transition and colossal magnetoresistance. The shape of this transition can be explained by intrinsic spatial inhomogeneities, which give rise to a domain structure of conducting and insulating domains at the submicrometer scale. These domains then undergo a percolation transition. The tunneling conductance and tunneling gap measured by scanning tunneling spectroscopy were used to distinguish and visualize these domains.  相似文献   

15.
Cross-sectional scanning tunneling microscopy and spectroscopy have been used to probe the unreconstructed (1 1 0) surface of a commercially available buried heterostructure laser in ultra high vacuum. Complex re-growth above the non-linear blocking layers is shown to induce tensile strain in the device. Spectroscopic measurements show an increase in both the density of filled valence band states and empty conduction band states as a result of the strain, with a particularly large increase at −3.1 V. Current imaging tunneling spectroscopy measurements show an increase in the tunneling current in to and out of the strained regions at both gap voltage polarities, consistent with the spectroscopy. Moving towards tensile strain, InP is known to maintain much the same bandgap, with the split-off level and lower lying states being drawn up towards the valence band edge, consistent with the data.  相似文献   

16.
C. Didiot 《Surface science》2007,601(18):4029-4035
Spectroscopic effects associated with the superperiodic surface structure have been observed in Au(1 1 1) vicinal surfaces and nanostructured systems. In the vicinal Au(23 23 21) surface, high resolution angle resolved photoemission spectroscopy shows the opening of several gaps in the surface band structure, whereas scanning tunneling spectroscopy reveals the energy dependence of the electronic density. These combined spectroscopic data allow to determine the reconstruction potential by deducing their first Fourier components. We also demonstrate that due to the peculiar growth on this Au vicinal surface, we can obtain a self-assembled superlattice of triangular Ag islands. The high ordering of the nanostructures leads to homogenous electronic properties.  相似文献   

17.
In this paper a number of optical spectroscopic methods for investigating surface electronic structure are discussed, including reflectance techniques, ellipsometry, surface photoconductivity and surface photovoltage spectroscopy. In addition to electron scattering techniques and UV-photoemission, optical spectroscopic methods have contributed much in recent times to the understanding of electronic surface states on solids. A discussion and comparison is given of the nature and significance of information obtained by these methods and exemplary experimental results are presented to illustrate the contribution of the optical techniques to the present knowledge about surface states. The relation between information obtained from optical measurements and electron spectroscopy is considered.  相似文献   

18.
For the first time the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are employed to investigate the morphology and the surface electronic structure of the defective silicon carbide nanowires (SiCNWs). The SiCNWs produced via combustion synthesis route are studied. The STS measurements are performed in the current imaging tunneling spectroscopy mode (CITS) that allows us to determine the correlation between STM topography and the local density of electronic states (LDOS) around the bend of an isolated SiCNW. The measurements reveal fluctuations of LDOS in the vicinity of the defect. The local graphitisation and the inhomogeneous concentration of doping impurities (e.g. nitrogen, oxygen) are considered to explain these fluctuations of metallic-like LDOS in the vicinity of the SiCNW's deformation.  相似文献   

19.
Yumu Yang 《中国物理 B》2021,30(11):116802-116802
Bulk group IB transition-metal chalcogenides have been widely explored due to their applications in thermoelectrics. However, a layered two-dimensional form of these materials has been rarely reported. Here, we realize semiconducting Cu2Se by direct selenization of Cu(111). Scanning tunneling microcopy measurements combined with first-principles calculations allow us to determine the structural and electronic properties of the obtained structure. X-ray photoelectron spectroscopy data reveal chemical composition of the sample, which is Cu2Se. The observed moiré pattern indicates a lattice mismatch between Cu2Se and the underlying Cu(111)-$\sqrt{3}$×$\sqrt{3}$ surface. Differential conductivity obtained by scanning tunneling spectroscopy demonstrates that the synthesized Cu2Se exhibits a band gap of 0.78 eV. Furthermore, the calculated density of states and band structure demonstrate that the isolated Cu2Se is a semiconductor with an indirect band gap of ~ 0.8 eV, which agrees quite well with the experimental results. Our study provides a simple pathway varying toward the synthesis of novel layered 2D transition chalcogenides materials.  相似文献   

20.
Inelastically tunneled electrons from a scanning tunneling microscope (STM) were used to induce vibrationally mediated motion of a single cis-2-butene molecule among four equivalent orientations on Pd(110) at 4.8 K. The action spectrum obtained from the motion clearly detects more vibrational modes than inelastic electron tunneling spectroscopy with a STM. We demonstrate the usefulness of the action spectroscopy as a novel single molecule vibrational spectroscopic method. We also discuss its selection rules in terms of resonance tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号