首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal properties of the spin Hall effect in ballistic 2D electron systems are addressed. The net spin polarization across the edge of the conductor is second order, approximately lambda2, in spin-orbit coupling constant independent of the form of the boundary potential, with the contributions of normal and evanescent modes each being approximately radical lambda but of opposite signs. This general result is confirmed by the analytical solution for a hard-wall boundary, which also yields the detailed distribution of the local spin polarization. The latter shows fast (Friedel) oscillations with the spin-orbit coupling entering via the period of slow beatings only. Long-wavelength contributions of evanescent and normal modes exactly cancel each other in the spectral distribution of the local spin density.  相似文献   

2.
A tunable two-antidot device is studied in the cyclotron-trapping regime. Periodic quantum oscillations are found to be superimposed on the peaks reminiscent of those observed in antidot lattices. The results are compared to quantum and classical simulations and Feynman path integral analysis. Published by Elsevier Science B.V.  相似文献   

3.
We develop a theory for frictional drag between two 2D hole layers in a dilute bilayer GaAs hole system, including effects of hole-hole and hole-phonon interactions. Our calculations suggest significant enhancement of hole drag transresistivity over the corresponding electron drag results. This enhancement originates from the exchange induced renormalization of the single-layer compressibility and the strong dependence of single-layer conductivity on density. We also address the effect of hole-phonon interaction on the drag temperature dependence. Our calculated results are in reasonable quantitative agreement with recent experimental observations.  相似文献   

4.
We report on the observation of a new phenomenon: a sequence of magnetic field induced transitions between well defined quantum Hall effect states, with a Hall resistance quantized as integer fractions of h/e2 and a vanishingly small longitudinal resistance, and insulator states with longitudinal resistance exceeding 2×109 Ω. This phenomenon is observed in extremely high mobility Si MOSFETs, in a range of electron concentrations corresponding to a dilute 2D electron gas in or near an activated electronic transport regime. We attribute this effect to a modulation of the metal-insulator transition by the quantum Hall effect or to the formation of a pinned Wigner solid.  相似文献   

5.
6.
7.
8.
We consider a mesoscopic ballistic structure with Rashba spin-orbit splitting of the electron spectrum. The ballistic region is attached to the leads with a voltage applied between them. We calculate the edge spin density which appears in the presence of a charge current through the structure due to the difference in populations of electrons coming from different leads. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization with the envelope function decaying as a power law of the distance from the boundary. The problem is solved with the use of scattering states. The simplicity of the method allows us gain an insight into the underlying physics. We clarify the role of the unitarity of scattering for the problem of edge spin accumulation. In case of a straight boundary it leads to exact cancellation of all long-wave oscillations of the spin density. As a result, only the Friedel-like spin density oscillations with the momentum 2k F survive. However, this appears to be rather exceptional case. In general, the smooth spin oscillations with the spin precession length recover, as it happens, e.g., for the wiggly boundary. We demonstrate also, that there is no relation between the spin current in the bulk, which is zero in the considered case, and the edge spin accumulation.  相似文献   

9.
We have measured the resistance noise of a two-dimensional (2D) hole system in a high mobility GaAs quantum well, around the 2D metal-insulator transition (MIT) at zero magnetic field. The normalized noise power S(R)/R(2) increases strongly when the hole density p(s) is decreased, increases slightly with temperature (T) at the largest densities, and decreases strongly with T at low p(s). The noise scales with the resistance, S(R)/R(2) approximately R2.4, as for a second order phase transition such as a percolation transition. The p(s) dependence of the conductivity is consistent with a critical behavior for such a transition, near a density p(*) which is lower than the observed MIT critical density p(c).  相似文献   

10.
We report very low temperature ( T) thermopower and resistivity ( rho) measurements on variable-density, two-dimensional hole systems confined to GaAs quantum wells. As the hole density is lowered from 1.49x10(11) cm(-2) to 0.14x10(11) cm(-2), the system crosses from an insulating ( drho / dT less, similar0) to a metallic regime ( drho / dT>0) and finally displays insulating behavior ( drho / dT<0). Diffusion thermopower shows a striking sign reversal in a narrow range of density in the metallic regime, suggesting a qualitative change in the conduction or the scattering mechanism.  相似文献   

11.
On a high-mobility 2D electron gas we have observed, in strong magnetic fields (omega(c)tau>1), a parabolic negative magnetoresistance caused by electron-electron interactions in the regime of k(B)Ttau/ variant Planck's over 2pi approximately 1, which is the transition from the diffusive to the ballistic regime. From the temperature dependence of this magnetoresistance the interaction correction to the conductivity deltasigma(ee)(xx)(T) is obtained in the situation of a long-range fluctuation potential and strong magnetic field. The results are compared with predictions of the new theory of interaction-induced magnetoresistance.  相似文献   

12.
We accurately measure the effective mass in a dilute two-dimensional electron system in silicon by analyzing the temperature dependence of the Shubnikov-de Haas oscillations in the low-temperature limit. A sharp increase of the effective mass with decreasing electron density is observed. We find that the enhanced effective mass is independent of the degree of spin polarization, which points to a spin-independent origin of the mass enhancement and is in contradiction with existing theories.  相似文献   

13.
We have measured the complex conductivity sigma(xx) of a two-dimensional electron system in the quantum Hall regime up to frequencies of 6 GHz at electron temperatures below 100 mK. Using both its imaginary and real part we show that sigma(xx) can be scaled to a single function for different frequencies and several transitions between plateaus in the quantum Hall effect. Additionally, the conductivity in the variable-range hopping regime is used for a direct evaluation of the localization length xi. Even for large filling factor distances deltanu from the critical point we find xi approximately equals deltanu(-gamma) with a scaling exponent gamma = 2.3.  相似文献   

14.
Tunneling of fractionally charged quasiparticles (QPs) through a barrier is considered in the context of a multiply connected geometry. In this geometry global constraints do not prohibit such a tunneling process. The tunneling amplitude is evaluated and the crossover from mesoscopic QP-dominated to electron-dominated tunneling as the system's size is increased is found. The presence of disorder enhances both electron and QP-tunneling rates.  相似文献   

15.
We present the transport and capacitance measurements of 10 nm wide GaAs quantum wells with hole densities around the critical point of the 2D metal-insulator transition (critical density p(c) down to 0.8 × 10(10)/cm2, r(s) ~ 36). For metallic hole density p(c) < p < p(c) + 0.15 × 10(10)/cm2, a reentrant insulating phase (RIP) is observed between the ν = 1 quantum Hall state and the zero-field metallic state and it is attributed to the formation of pinned Wigner crystal. Through studying the evolution of the RIP versus 2D hole density, we show that the RIP is incompressible and continuously connected to the zero-field insulator, suggesting a similar origin for these two phases.  相似文献   

16.
17.
The results of a microscopic theory, based on the topological concept of a θ vacuum, which show that the Coulomb potential, unlike any finite-ranged interaction potential, renders the long-standing problem of the plateau transitions in the quantum Hall regime like a non-Fermi liquid are reported. These results, which are important for quantum-phase transitions in general and composite fermion ideas in particular, provide a novel understanding of the critical exponent values that have recently been (re-)taken from a series of state-of-the-art quantum Hall samples. The text was submitted by the authors in English.  相似文献   

18.
By varying the absorption coefficient and width of an intralipid-India ink solution in a quasi-one-dimensional experiment, we investigate the transition between the ballistic and the diffusive regimes. The medium's attenuation coefficient changes abruptly between two different values within a single mean free path. This problem is analyzed both experimentally and theoretically, and it is demonstrated that the transition location depends on the scattering coefficient as well as on the measuring solid angle.  相似文献   

19.
A simple system consisting of a two-dimensional electron gas with a narrow conducting wire is studied. In this system, a giant hysteresis of both longitudinal and Hall magnetoresistances in the quantum Hall effect regime is observed for even and odd filling factors v of the Landau levels. At v = 1 and v = 2, the giant hysteresis occurs in the background of the zero-resistance plateau, and the width of the hysteresis loop in a magnetic field is comparable to the plateau width. At the entry to the hysteresis region, the magnetoresistance varies in a threshold manner; i.e., a magnetically induced breakdown of the quantum Hall effect takes place. It is shown that the system under study reflects the relaxation processes in the two-dimensional electron gas adjacent to the wire and, therefore, represents an effective instrument for investigating the hysteresis phenomena in the two-dimensional electron gas itself. An unusual “anticoercive” behavior of the hysteresis is revealed. A comparative analysis of the results obtained and the experimental data on the long relaxation of eddy currents and on the ferromagnetic state of the quantum Hall liquid indicates the common physical origin of these effects.  相似文献   

20.
The charge of quasiparticles in a fractional quantum Hall (FQH) liquid, tunneling through a partly reflecting constriction with transmission t, was determined via shot noise measurements. In the nu = 1/3 FQH state, a charge smoothly evolving from e(*) = e/3 for t(1/3) congruent with 1 to e(*) = e for t(1/3)<1 was determined, agreeing with chiral Luttinger liquid theory. In the nu = 2/5 FQH state the quasiparticle charge evolves smoothly from e(*) = e/5 at t(2/5) congruent with 1 to a maximum charge less than e(*) = e/3 at t(2/5)<1. Thus it appears that quasiparticles with an approximate charge e/5 pass a barrier they see as almost opaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号