首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate.  相似文献   

2.
We investigate the dynamic behavior of shuttle buses when passengers switch to another bus B on route B from bus A on route A. By switching from bus A to bus B, the outflow of passengers from route A (inflow of passengers into route B) changes to the periodic inflow of a square wave. The dynamics of the shuttle buses with the change is described by the modified circle map model. The bus schedule and control are closely related to the dynamics. The motion of shuttle buses depends on the inflow rate, its period, and moving time ratio. The shuttle bus displays such complex behavior as periodic, quasi-periodic, and chaotic motions.  相似文献   

3.
Takashi Nagatani 《Physica A》2008,387(23):5892-5900
We study the dynamical behavior of a shuttle bus moving through a traffic signal. The dynamics of the bus is expressed in terms of the nonlinear maps. The bus dynamics is controlled by varying the loading parameter, the cycle time of signal, and the degree of speedup. We show the dependence of the tour time on both loading parameter and cycle time. The fluctuation of boarding passengers is highly reduced by varying the cycle time. When the bus speeds up to retrieve the delay induced by loading the passengers, the bus behavior also changes highly. The shuttle bus schedule is connected with the complex motion of the shuttle bus. The region map (phase diagram) is shown to control the complex motion of the bus.  相似文献   

4.
We study a bus schedule in a shuttle bus transportation system controlled by capacity. The motion of shuttle buses depends on the inflow rate of passengers, the number of buses, and the delayed increase of buses. The bus schedule is closely related to the dynamic motion of buses. The delayed increase of buses has an important effect on the arrival of buses. We present the delayed piecewise map model for the dynamics of shuttle buses with the delayed increase. The motion of buses changes from a stable state to an unstable state and vice versa with increasing the inflow rate. The arrival of shuttle buses oscillates with various periods in the unstable state. The dynamic transitions change highly with the delayed increase of buses. We clarify the effect of the delayed increase on the bus schedule.  相似文献   

5.
《Physica A》2006,371(2):683-691
We study the dynamical behavior of a few shuttle buses when they pass each other freely and control the speed to retrieve the loading's delay. The dynamics of the buses is expressed in terms of the nonlinear maps. The tour times of buses and the time headway between buses exhibit the complex behavior with varying trips. The buses exhibit deterministic chaos even if there are no noises. Bus speeds up to retrieve the delay induced by loading the passengers on its bus. The bus chaos is controlled by varying the degree of speedup. The chaotic motion depends on both loading and speedup's parameters. The shuttle bus schedule is connected with the complex motions of shuttle buses. The region map (phase diagram) is shown to control the complex motions of buses.  相似文献   

6.
We investigated the internal dynamics of an electro-fluid shuttle memory element, consisting of K+@C60 and F@C60 encapsulated in a C640 nanocapsule. Energetics and operating responses of bipolar endo-fullerenes shuttle memory device, (K+@C60–F@C60)@C640, were examined by classical molecular dynamics simulations under the external force fields.  相似文献   

7.
张荣  楚卫东  段素青  杨宁 《中国物理 B》2013,22(11):117305-117305
We investigate the effect of the mechanical motion of a quantum dot on the transport properties of a quantum dot shuttle.Employing the equation of motion method for the nonequilibrium Green’s function,we show that the oscillation of the dot,i.e.,the time-dependent coupling between the dot’s electron and the reservoirs,can destroy the Kondo effect.With the increase in the oscillation frequency of the dot,the density of states of the quantum dot shuttle changes from the Kondo-like to a Coulomb-blockade pattern.Increasing the coupling between the dot and the electrodes may partly recover the Kondo peak in the spectrum of the density of states.Understanding of the effect of mechanical motion on the transport properties of an electron shuttle is important for the future application of nanoelectromechanical devices.  相似文献   

8.
Random telegraph noise in the electric current produced by shot noise is predicted for an array of movable colloid particles by Monte Carlo and molecular dynamics calculations. The electron transport is attributed to the shuttle mechanism where moving colloid particles carry charges. The colloid-particle motion induced by the source-drain voltage shows periodic and/or quasiperiodic vibrations, and the current value depends on the vibration modes. Shot noise that is uncorrelated with the colloid-particle motion causes transitions between the periodic and quasiperiodic vibration modes, resulting in random switching between the current levels corresponding to the vibration modes.  相似文献   

9.
We investigate theoretically multimode electromechanical "shuttle" instabilities in dc voltage-biased nanoelectromechanical single-electron tunneling devices. We show that initially irregular (quasiperiodic) oscillations that occur as a result of the simultaneous self-excitation of several mechanical modes with incommensurable frequencies self-organize into periodic oscillations with a frequency corresponding to the eigenfrequency of one of the unstable modes. This effect demonstrates that a local probe can selectively excite global vibrations of extended objects.  相似文献   

10.
The problem of electron transport by means of a dumbbell shaped shuttle in strong Coulomb blockade regime is solved. The electrons may be shuttled only in the cotunneling regime during the time spans when both shoulders of the shuttle approach the metallic banks. The conventional Anderson-like tunneling model is generalized for this case and the tunneling conductance is calculated in the adiabatic regime of slow motion of the shuttle. Non-adiabatic corrections are briefly discussed  相似文献   

11.
We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral shape confined inside a rectangular box with a retaining wall subjected to horizontal harmonic forcing. The simulations are performed by means of the contact dynamics method for a broad set of loading parameters. We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dynamics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short-time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to frequency.  相似文献   

12.
Chan SC  Xia GQ  Liu JM 《Optics letters》2007,32(13):1917-1919
A semiconductor laser under negative optoelectronic feedback is applied to the generation of a microwave frequency comb through the nonlinear dynamics. The laser system is operated in a harmonic frequency-locked pulsing state, where its power spectrum is a microwave frequency comb that consists of multiples of a locking frequency. Every frequency component of the comb can be simultaneously stabilized by simply injecting an external microwave modulation at any component of the comb. This phenomenon can be viewed as a kind of microwave injection locking of the laser dynamics.  相似文献   

13.
This paper introduces comprehensive large-signal analyses of modulation dynamics and noise of a chaotic semiconductor laser. The chaos is induced by operating the laser under optical feedback (OFB). Control of the chaotic dynamics and possibility of suppressing the associated noise by sinusoidal modulation are investigated. The studies are based on numerical solutions of a time-delay rate equation model. The deterministic modulation dynamics of the laser are classified into seven regular and irregular dynamic types. Variations of chaotic dynamics and noise with sinusoidal modulation are examined in both time and frequency domains over wide ranges of the modulation depth and frequency. The results showed that chaotic dynamics can be converted into five distinct dynamic types; namely, continuous periodic signal (CPS), continuous periodic signal with relaxation oscillations (CPSRO), periodic pulse (PP), periodic pulse with relaxation oscillations (PPRO) and periodic pulse with period doubling (PPPD). The relative intensity noise (RIN) of these types is characterized when the modulation frequencies are much lower, comparable to, and higher than the resonance frequency. Suppression of RIN to a level 8 dB/Hz higher than the quantum limit was predicted under the CPS type when the modulation frequency is 0.9 times the resonance frequency and the modulation depth is 0.14.  相似文献   

14.
15.
The magnetic field dependence of the nuclear spin-lattice relaxation rate provides a detailed report of the spectral density functions that characterize the intra- and intermolecular fluctuations that drive magnetic relaxation. We have addressed the difficult sensitivity and resolution problems associated with low magnetic field strengths by using two magnets in close proximity and shielded from each other. The sample is stored in the high magnetic field, pneumatically driven to the variable satellite field, then returned to the high field for detection at high resolution. A magnetic shield effectively decouples the two magnets so that varying the satellite field strength has minimal effect on the field strength and shim of the high field magnet. The disadvantage of the sample-shuttle magnet-pair system is the restriction imposed on the relaxation times by the finite shuttle times. Experiments not described here have shown this rate maximum to be about 20 s(-1) for most practical solutions. However, we demonstrate here that the sensitivity gains over switched-current magnet systems permit characterization of solute inter- and intramolecular dynamics over the time scale range from tens of microseconds to less than a picosecond. This range permits investigation of a number of crucial chemical dynamics questions, while high sensitivity permits examination of a variety of solute spins. Representative data are presented for (1)H, (111)Cd, and (7)Li.  相似文献   

16.
An analytical analysis of quantum shuttle phenomena in a nanoelectromechanical single-electron transistor has been performed in the realistic case, when the electron tunneling length is much greater than the amplitude of the zero point oscillations of the central island. It is shown that when the dissipation is below a certain threshold value, the vibrational ground state of the central island is unstable. The steady state into which this instability develops is studied. It is found that if the electric field E between the leads is much greater than a characteristic value E(q), the quasiclassical shuttle picture is recovered, while if E0) shuttle vibrations.  相似文献   

17.
The cloud of cold atoms obtained from a magneto-optical trap is known to exhibit two types of instabilities in the regime of high atomic densities: stochastic instabilities and deterministic instabilities. In the present paper, the experimentally observed stochastic dynamics is described extensively. It is shown that it exists a variety of dynamical behaviors, which differ by the frequency components appearing in the dynamics. Indeed, some instabilities exhibit only low frequency components, while in other cases, a second time scale, corresponding to a higher frequency, appears in the motion of the center of mass of the cloud. A one-dimensional stochastic model taking into account the shadow effect is shown to be able to reproduce the experimental behavior, linking the existence of instabilities to folded stationary solutions where noise response is enhanced. The different types of regimes are explained by the existence of a relaxation frequency, which in some conditions is excited by noise.Received: 18 June 2003, Published online: 28 October 2003PACS: 32.80.Pj Optical cooling of atoms; trapping - 05.40.Ca Noise - 05.45.-a Nonlinear dynamics and nonlinear dynamical systems  相似文献   

18.
In this paper, the influence of fluctuation amplitude and frequency of the injection field on the dynamics and synchronization of semiconductor lasers are studied numerically. The fluctuation amplitude and frequency of the injection field are controlled by external modulation of the master laser. In the simulation, we use a modified correlation coefficient named similarity index to evaluate the synchronization performance. The results show that frequency and fluctuation amplitude of the injection field play important roles on the dynamics and synchronization quality of the system. Large fluctuation amplitude and moderate fluctuation frequency of the injection field will contribute to the synchronization of the two lasers. The results can also be extended to the analysis of chaotic signals.  相似文献   

19.
王德华  王传娟 《中国物理 B》2017,26(10):103202-103202
The photodetachment dynamics of H~- ion in a harmonic potential plus an oscillating electric field is studied using the time-dependent closed orbit theory. An analytical formula for calculating the photodetachment cross section of this system is put forward. It is found that the photodetachment cross section of this system is nearly unaffected for the weak oscillating electric field strength, but oscillates complicatedly when the oscillating electric field strength turns strong. In addition, the frequency of the harmonic potential and the oscillating electric field(the frequency of the harmonic potential and the frequency of the oscillating electric field are the same in the paper, unless otherwise stated.) can also affect the photodetachment dynamics of this system. With the increase of the frequency in the harmonic potential and the oscillating electric field, the number of the closed orbits for the detached electrons increased, which makes the oscillatory structure in the photodetachment cross section much more complex. Our study presents an intuitive understanding of the photodetachment dynamics driven by a harmonic potential plus an oscillating electric field from a space and time dependent viewpoint.This study is very useful in guiding the future experimental research for the photodetachment dynamics in the electric field both changing with space and time.  相似文献   

20.
Zhi-Wei Jia 《中国物理 B》2022,31(10):100505-100505
Dynamic states in mutual-coupled mid-infrared quantum cascade lasers (QCLs) were numerically investigated in the parameter space of injection strength and detuning frequency based on the Lang—Kobayashi equations model. Three types of period-one states were found, with different periods of injection time delay τinj, 2τinj, and reciprocal of the detuning frequency. Besides, square-wave, quasi-period, pulse-burst and chaotic oscillations were also observed. It is concluded that external-cavity periodic dynamics and optical modes beating are the mainly periodic dynamics. The interaction of the two periodic dynamics and the high-frequency dynamics stimulated by strong injection induces the dynamic states evolution. This work helps to understand the dynamic behaviors in QCLs and shows a new way to mid-infrared wide-band chaotic laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号