首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
冲击加载下孔洞贯通的微观机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用分子动力学方法计算模拟了沿〈100〉晶向冲击加载下单晶铜中双孔洞的贯通过程.发现孔洞周围发射剪切型位错环是孔洞塌缩和增长的原因.在拉伸阶段,孔洞首先分别独立增长,随后其周围塑性变形区开始交叠和相互作用,最后两个孔洞开始直接贯通.这种贯通模式和实验对延性材料中孔洞贯通过程的显微观察结果一致.对四种不同θ值(θ为两个孔洞中心连线与冲击加载方向之间的夹角)的模型分别进行了计算模拟,发现在相同的冲击加载强度下,θ=0°和θ=30°的孔洞之间没有相互贯通; 关键词: 纳米孔洞 分子动力学 冲击加载 贯通  相似文献   

2.
利用分子动力学方法模拟沿拉伸方向排布的两个空洞在单轴拉伸作用下的动力学行为.着重研究不同尺寸空洞对其拉伸贯通过程的影响.结果表明,不同尺度的空洞都是通过空洞表面发射位错环长大与贯通的.空洞在弹性阶段沿加载方向缓慢长大,在塑性阶段沿垂直方向生长后形成类八面体形状.随空洞尺寸的减小,临界屈服应力逐渐增大.当半径较大时,位错对称成核、迁移,空洞沿加载方向被拉长,演化过程相似;当半径较小时,位错不对称成核,空洞沿垂直方向被拉长.空洞生长分为弹性变形、独立长大、融合贯通和平稳生长四个阶段.独立生长阶段随尺寸的减小逐渐缩短甚至消失.  相似文献   

3.
Yanqiu Zhang 《哲学杂志》2013,93(30):2772-2794
Abstract

Molecular dynamics simulations were conducted to elucidate dislocation mechanisms of the void growth and coalescence in single crystal and nanotwinned nickels subjected to uniaxial tension. The simulation results reveal that twin boundary is capable of decreasing the critical stress, suppressing the emission of dislocations and reducing the overall stiffness of the crystal. A size-scale dependence of critical stress is definitely illustrated through stress–strain response, where the larger void size leads to the lower critical stress and strain. It is the successive emissions of leading partials and the subsequent trailing partials that cause the atoms on the void surfaces to escape from the void surfaces continually, and consequently the voids grow to be larger and larger with increasing strain. The voids in the nanotwinned nickel coalesce earlier than those in the single crystal nickel even though the initiation of dislocations in the former is later than that in the latter. Void fraction remains a constant during elastic deformation, while it presents a linear increase with increasing strain during plastic deformation. Evolution of void fraction during void growth and coalescence is independent on void size.  相似文献   

4.
Cascade irradiation of metals gives rise to swelling as a result of the creation of voids and the evolution of the void ensemble. Under suitable circumstances, the originally disordered void distribution transforms into to a void lattice. As demonstrated previously, the understanding of the evolution and the unique features of the void ensemble requires a difference in the anisotropy of the diffusion (DAD) of vacancies and self-interstitial atoms (SIAs), which is achieved by one-dimensional diffusion of the SIAs. On the other hand, void swelling has been successfully modeled in terms of three-dimensional diffusion of both vacancies and SIAs. In the present paper it is shown that these seemingly contradicting interpretations and all related observations can be quantitatively reconciled by a small DAD created by only ~1% of SIAs diffusing one-dimensionally. It is also demonstrated that at the initial stage of void-lattice formation, ordering occurs mainly on close-packed crystal planes, which is in contrast to the naïve expectation that one-dimensional diffusion of SIAs should result in a void ordering along close-packed directions. Finally it is found that, in the case of a small DAD, voids annihilate via stochastic shrinkage much faster than by coalescence. This falsifies the argument in the literature that one-dimensional diffusion of SIAs would necessarily lead to the coalescence of voids and destabilization of the void lattice.  相似文献   

5.
6.
7.
Simulation of molecular dynamics using Embedded Atom Method (EAM) potentials is performed to investigate the mechanical properties of single crystal Al along various crystallographic orientations under tensile loading. The specimens are provided with one or two embedded circular voids to analyze the damage evolution by void growth and coalescence. The simulation result shows that the Young's modulus, yielding stress and ultimate stress decrease with the emergence of the voids. Besides, the simulations show that the single-crystal Al in different crystallographic orientations behaves differently in elongation deformations. The single-crystal Al with <100> crystallographic orientations has greater ductility than other orientated specimens. The incipient plastic deformation and the stress-strain curves are presented and discussed for further understanding of the mechanical properties of single-crystal Al.  相似文献   

8.
One of the failure mechanisms in ductile materials is growth and coalescence of pre-existing voids. In view of this, we attempt to obtain atomistic insights into the prevailing mechanisms of void growth in a representative ductile material, namely Copper, using molecular dynamics simulations. In addition to shedding light on the observed length scale effects and dislocation mechanisms, we also elucidate how atomistic simulations can inform continuum-based models of failure and provide fodder for bridging different length scales. By performing a series of over 150 molecular dynamics simulations, we also try to decode the interplay between mechanical properties and void growth, and investigate the role of heterogeneity in void distribution (in terms of void size and placement) in affecting the strength of the material. Coupled with a comprehensive global sensitivity analysis technique, we explore configuration–property relationships in a subset of vast parameter space and highlight the importance of random nature of void distribution (along with some critical statistical parameters) in any successful theory of fracture.  相似文献   

9.
Nucleation of voids via the stochastic accumulation of vacancies is considered when one-dimensionally migrating self-interstitials are present. A system instability signaling a non-equilibrium phase transition is found to occur when the mean free path of the one-dimensionally moving self-interstitials becomes comparable with the average distance between the voids at a sufficiently high void-number density. At this point, due to the exponential dependence of void nucleation probability on the net vacancy flux, the nucleation of voids is much more favored at the void lattice positions. At the same time, voids initially nucleated at positions where neighboring voids are non-aligned will shrink away. The shrinkage of non-aligned voids is caused entirely by the stochastic fluctuations in point-defect fluxes received by the voids. These two processes leave the aligned voids to form a regular lattice. The formation of the void lattice in this way can be accomplished at a void swelling of below 1%, in agreement with experimental observation. PACS 61.80.Az; 61.72.Cc; 05.65.+b  相似文献   

10.
Multimillion-to-billion-atom molecular dynamics simulations are performed to investigate the interaction of voids in silica glass under hydrostatic tension. Nanometer size cavities nucleate in intervoid ligaments as a result of the expansion of Si-O rings due to a bond-switching mechanism, which involves bond breaking between Si-O and bond formation between that Si and a nonbridging O. With further increase in strain, nanocracks form on void surfaces and ligaments fracture through the growth and coalescence of ligament nanocavities in a manner similar to that observed in ductile metallic alloys.  相似文献   

11.
The random nature of diffusing jumps and cascade occurrence produce stochastic fluctuations of the point-defect fluxes. The effect of such fluctuations on the kinetics of void growth is investigated in the present paper. It is found that the non-linear coupling between the stochastic fluctuations and the void sizes may lead to the instability of void evolution within the mean-field theory, when the sizes of voids and their growth rates are both relatively small. The growth rate of voids becomes dominated by the stochastic component, causing the smaller voids to shrink away. This effect is investigated in terms of a non-equilibrium phase transition induced by a purely random stochastic noise. The derived conditions for this non-equilibrium transition are compared favourably with experimental observations. Received: 5 June 2000 / Accepted: 9 October 2000 / Published online: 21 March 2001  相似文献   

12.
J. H. Evans 《哲学杂志》2013,93(11):1177-1190
This paper describes the use of simulation techniques to examine some of the processes involved in the alignment of voids under the influence of one-dimensional self interstitial atom (1-d SIA) transport. The work follows the paper of Heinisch and Singh on this topic but a different and simpler methodology is used. Besides repeating the scenarios studied by Heinisch and Singh, the effects of re-nucleation and the influence of vacancies have been introduced. One of the important processes that emerged from the results was the barrier to precise void alignment caused by the SIA-induced coalescence of aligned voids. This appears to prevent the formation of stable void lattices by any 1-d SIA transport mechanism, a point supported by the initial void alignment in the mechanism requiring swelling values well above those found experimentally. A full consideration of the void lattice phenomenon shows that the one-dimensional diffusion of self-interstitials central to the production bias model of irradiation damage cannot be the only mode of anisotropic diffusion available under irradiation.  相似文献   

13.
We study properties of voids growth dynamics in a stochastic system of point defects insolids under nonequilibrium conditions (sustained irradiation). It is shown thatfluctuations of defect production rate (external noise) increase the critical void radiuscomparing to a deterministic system. An automodel regime of void size growth in astochastic system is studied in detail. Considering a homogeneous system, it is found thatexternal noise does not change the universality of the void size distribution function;the mean void size evolves according to classical nucleation theory. The noise increasesthe mean void size and spreads the void size distribution. Studying dynamics of spatiallyextended systems it was shown that vacancies remaining in a matrix phase are able toorganize into vacancy enriched domains due to an instability caused by an elastic latticedeformation. It is shown that dynamics of voids growth is defined by void sinks strengthwith void size growth exponent varying from 1/3 up to 1/2.  相似文献   

14.
Pores and cavities form at filler particle-polymer matrix interfaces, at polymer film-silicon substrate interfaces as well as in molding compounds of IC packages. Moisture diffuses to these voids. During reflow soldering, surface mount plastic encapsulated devices are exposed to temperatures between 210 to 260°C. At these temperatures, the condensed moisture vaporizes. The rapidly expanding water vapor can create internal pressures within the voids that reach 3–6 MPa. These levels are comparable to the yield strengths of epoxy molding compounds and epoxy adhesives, whose glass transition temperatures T g range between 150 to 300°C. Under the combined action of thermal stress and high vapor pressure (relative to the yield strength at T g), both pre-existing and newly nucleated voids grow rapidly and coalesce. In extreme situations, vapor pressure alone could drive voids to grow and coalesce unstably causing film rupture, film-substrate interface delamination and cracking of the plastic package.Vapor pressure effects on void growth have been incorporated into Gurson's porous material model and a cohesive law. Crack growth resistance-curve calculations using these models show that high vapor pressure combined with high porosity bring about severe reduction in the fracture toughness. In some cases, high vapor pressure accelerates void growth and coalescence resulting in brittle-like interface delamination. Vapor pressure also contributes a strong tensile mode component to an otherwise shear dominated interface loading. An example of vapor pressure related IC package failure, known as popcorn cracking, is discussed.  相似文献   

15.
Mechanism of void coalescence in a metal irradiated by fast particles : p to high doses in dpa is theoretically investigated. It is shown that the decrease of void concentration with the dose increase due to the coalescence of immobile but growing voids must obey the dependence N 0 ~ exp {-α(δ V/V)(t)}, where δV/V(t) is the void swelling at a time moment t, and α is a constant, the value of which is in the interval 1 < α < 8 and seems to be close to α ≈ 6.

It is shown that the void concentration as a function of irradiation dose : hould have a maximum when the void swelling δ V/V reaches some definite value between 2% and 17% depending upon the void size distribution form.  相似文献   

16.
粘塑性介质中球形孔洞的动态增长   总被引:1,自引:0,他引:1       下载免费PDF全文
 提出了一个新的粘塑性介质中球形孔洞在高加载率作用下的演化方程。方程中考虑了应变率、局部惯性和介质的硬化效应,并对这些影响进行了数值分析和讨论。数值分析结果表明:孔洞的增长对外加载率和应变率十分敏感,在高加载率条件下局部惯性效应对孔洞增长有着重要影响,随着加载率的增加,这种影响增大。另外,得到了使孔洞增长的临界应力值的表达式。  相似文献   

17.
Molecular dynamics simulations were performed to study void evolution subject to unidirectional self-bombardment and radiation-induced variation of mechanical properties in single crystalline vanadium. 3D simulation cells of perfect body-centered cubic (BCC) vanadium, as well as those with one, two, four, and six voids, were investigated. For the no void case, the maximum number of defects, maximum volumetric swelling, and the number of defects left in bulk after a sufficiently long recovery period increased with higher primary recoil energy. For the cases containing voids, a primary recoil energy was carefully assigned to an atom so as to initiate a dense collision spike in the voids center, where some self-interstitial atoms gained kinetic energy by secondary replacement collision sequence traveling along the ? 111? direction. It is found that the larger or the greater the number of voids contained initially in the box, the larger the normalized void volume, and the smaller the volumetric swelling after sufficient recovery of systems. In the single void case, the void became elongated along the bombarding direction; in the multiple void cases, the voids coalesced only when the intervoid ligament distance was short. After sufficient relaxation of the irradiated specimen, a hydrostatic tension was exerted on the box, where the voids were treated as dislocation sources. It is shown that with higher primary recoil energy, the yield stress dropped in cases with smaller or fewer voids but rose in those with larger or greater number of voids. This radiation-induced softening to hardening transition with increasing dislocation density can be attributed to the combined effects of the defect-induced dislocation nucleation and the resistance of defects to dislocation motion. Moreover, as the primary recoil energy increased, the ductility of vanadium in the no void case decreased, but was only slightly changed in the cases containing void.  相似文献   

18.
The mechanisms of photomechanical spallation are investigated in a large-scale MD simulation of laser interaction with a molecular target performed in an irradiation regime of inertial stress confinement. The relaxation of laser-induced thermoelastic stresses is found to be responsible for the nucleation, growth, and coalescence of voids in a broad sub-surface region of the irradiated target. The depth of the region subjected to void evolution is defined by the competition between the evolving tensile stresses and thermal softening of the material due to the laser heating. The initial void volume distribution obtained in the simulation of laser spallation can be well described by a power law. A similar volume distribution is obtained in a series of simulations of uniaxial expansion of the same molecular system performed at a strain rate and temperature realized in the irradiated target. Spatial and time evolution of the laser-induced pressure predicted in the MD simulation of laser spallation is related to the results of an integration of a thermoelastic wave equation. The scope of applicability of the continuum calculations is discussed. PACS 79.20.Ds; 61.80.Az; 02.70.Ns; 83.60.Uv  相似文献   

19.
《Current Applied Physics》2018,18(6):744-751
Material deformation caused by the interaction between defects is a significant factor of material fracture failure. The present study employs molecular dynamics simulations of single-void and double-void crystalline Ni atomic systems to investigate inter-void interactions. Furthermore, simulations showing the evolution of dislocations for three different crystallographic orientations are conducted to study the void growth and coalescence. The simulations also consider the effect of the radius of the secondary void on dislocation evolution. The results show that double-void systems are more prone to yield than single-void systems. Further microstructural analysis indicates that the interaction between voids is realized by dislocation reactions. The simulation results of the dislocation evolution of the three orientations reveal that a relationship exists between the evolution of the dislocation density and the stress-strain curve. At the initial stage of dislocation, the dislocation grows slowly, and consists of Shockley partial dislocation. The dislocation growth rate then increases significantly in the sharply declining stage of the stress-strain curve, where most of dislocations are Shockley partial dislocation. Analysis of the dislocation length during the overall simulation indicates that the dislocation length of the [110] orientation is the longest, followed by that of the [111] orientation and the [100] orientation, which has the shortest dislocation length.  相似文献   

20.
彭辉  裴晓阳  李平  贺红亮  柏劲松 《物理学报》2015,64(21):216201-216201
本文对平面冲击加载下高纯铜初始层裂的微损伤特性进行了研究. 利用准三维的表面轮廓测试技术, 对冲击加载“软回收”的样品截面进行测试. 通过对测试数据的重构、量化和统计分析, 结果表明: 拉伸应力持续时间和加载应力幅值的增加, 都会加剧样品内部损伤局域化程度. 样品内损伤区域宽度是亚微米尺度的损伤演化的结果, 并且亚微米尺度的演化速率随着拉伸应变率的增加而单调递增. 通过统计获得了样品内微损伤的尺寸分布特征, 并分析了其与损伤演化进程的关联.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号