首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have determined the finite temperature coherence length of edge states in the integer quantum Hall effect regime. This was realized by measuring the visibility of electronic Mach-Zehnder interferometers of different sizes, at filling factor 2. The visibility shows an exponential decay with the temperature. The characteristic temperature scale is found inversely proportional to the length of the interferometer arm, allowing one to define a coherence length l_(phi). The variations of l_(phi) with magnetic field are the same for all samples, with a maximum located at the upper end of the quantum Hall plateau. Our results provide the first accurate determination of l_(phi) in the quantum Hall regime.  相似文献   

2.
We report resonant tunneling experiments in a quantum antidot sample in the integer quantum Hall regime. In particular, we have measured the temperature T dependence of the peak value of a conductance peak on the i = 2 plateau, where there are two peaks per magnetic flux quantum straight phi(0). We observe a T-1 dependence as expected when tunneling through only one electron state is possible. This result is incompatible with tunneling through a compressible ring of several degenerate states. We also observe, for the first time, three conductance peaks per straight phi(0) on the i = 3 plateau.  相似文献   

3.
In this paper we report the measurement of conductance fluctuations in 3D crystals of Si made metallic by heavy doping. ( L/L(straight phi) approximately 10(3), where L(straight phi) is the phase coherence length.) Temperature and magnetic field dependence of noise strongly indicate the universal conductance fluctuations as a predominant source of the observed magnitude of noise. Conductance fluctuations within a single phase coherent region of L(3)(straight phi) were found to be saturated at <(deltaG(straight phi))(2)> approximately (e(2)/h)(2). An accurate knowledge of the level of disorder enables us to calculate the change in conductance deltaG1 due to movement of a single scatterer as <(deltaG1)(2)> approximately (e(2)/h)(2), which is approximately 2 orders of magnitude higher than its theoretically expected value in 3D systems.  相似文献   

4.
We investigate weak localization in metallic networks etched in a two-dimensional electron gas between 25 and 750 mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T > or approximately 0.3 K we find L phi env proportional T(-1/3) for the envelope and L phi osc proportional, T(-1/2) for the oscillations, in agreement with the prediction for a single ring [T. Ludwig and A. D. Mirlin, Phys. Rev. B 69, 193306 (2004); 10.1103/PhysRevB.69.193306C. Texier and G. Montambaux, Phys. Rev. B 72, 115327 (2005); 10.1103/PhysRevB.72.115327C. Texier, Phys. Rev. B76, 153312 (2007)10.1103/PhysRevB.76.153312]. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.  相似文献   

5.
We study the scattering properties of an interface between a one-dimensional (1D) wire and a two-dimensional (2D) electron gas. Experiments were conducted in the highly controlled geometry provided by molecular bean epitaxy overgrowth onto the cleaved edge of a high quality GaAs /AlGaAs quantum well. Such structures allow for the creation of variable length 1D-2D coupling sections. We find ballistic 1D electron transport through these interaction regions with a mean free path as long as 6 &mgr;m. Our results explain the origin of the puzzling nonuniversal conductance quantization observed previously in such 1D wires.  相似文献   

6.
We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.  相似文献   

7.
New low-lying excitations are observed by inelastic light scattering at filling factors nu=p/(phip+/-1) of the fractional quantum Hall regime with phi=4. Coexisting with these modes throughout the range nu < or =1/3 are phi=2 excitations seen at 1/3. Both phi=2 and phi=4 excitations have distinct behaviors with temperature and filling factor. The abrupt first appearance of the new modes in the low-energy excitation spectrum at nu > or near 1/3 suggests a marked change in the quantum ground state on crossing the phi=2-->phi=4 boundary at nu=1/3.  相似文献   

8.
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.  相似文献   

9.
We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation phi(t). Assuming the dot to be described by random-matrix theory for the Gaussian orthogonal ensemble, we find the quantum correction to the energy absorption rate as a function of the dephasing time t(phi). If phi(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that for the conductivity deltasigma(d)(t(phi)) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation, the leading quantum correction is absent as in the systems of the unitary symmetry class, unless phi(-t+tau)=phi(t+tau) for some tau, which falls into the quasi-1D orthogonal universality class.  相似文献   

10.
We present a measurement of the angle phi1 of the Cabibbo-Kobayashi-Maskawa unitarity triangle using a time-dependent Dalitz analysis of D-->KS(0)pi + pi- decays produced in neutral B meson decay to a neutral D meson and a light meson (B0-->D*h0). The method allows a direct extraction of 2phi1 and, therefore, helps to resolve the ambiguity between 2phi1 and pi-2phi1 in the measurement of sin2phi1. We obtain sin2phi1= 0.78 +/- 0.44 +/- 0.22 and cos2varphi1 = 1.87(-0.53-0.32)(+0.40 + 0.22). The sign of cos2phi1 is determined to be positive at 98.3% C.L.  相似文献   

11.
The effect of quantum contact resistance on one-dimensional (1D) electrical conductance was investigated in quantum wires (QWR) realized with V-shaped GaAs/AlGaAs heterostructure. The transition length between the electron reservoir and the QWR was controlled by employing an electric field. The required transition length is found to decrease with increasing overlap between the 2D states in the reservoir and the 1D states in the QWR.  相似文献   

12.
We investigate the quantum dynamics of site diluted S=1/2 Heisenberg antiferromagnetic clusters at the 2D percolation threshold. We use Lanczos diagonalization to calculate the lowest excitation gap Delta and, to reach larger sizes, use quantum Monte Carlo simulations to study an upper bound for Delta obtained from sum rules involving the staggered structure factor and susceptibility. Scaling the gap distribution with the cluster length L, Delta approximately L(-), we obtain a dynamic exponent z approximately 2D(f), where D(f)=91/48 is the fractal dimensionality of the percolating cluster. This is in contrast with previous expectations of z=D(f). We argue that the low-energy excitations are due to weakly coupled effective moments formed due to local imbalance in sublattice occupation.  相似文献   

13.
张志东 《中国物理 B》2013,22(3):30513-030513
An overview of the mathematical structure of the three-dimensional(3D) Ising model is given from the points of view of topology,algebra,and geometry.By analyzing the relationships among transfer matrices of the 3D Ising model,Reidemeister moves in the knot theory,Yang-Baxter and tetrahedron equations,the following facts are illustrated for the 3D Ising model.1) The complex quaternion basis constructed for the 3D Ising model naturally represents the rotation in a(3+1)-dimensional space-time as a relativistic quantum statistical mechanics model,which is consistent with the 4-fold integrand of the partition function obtained by taking the time average.2) A unitary transformation with a matrix that is a spin representation in 2 n·l·o-space corresponds to a rotation in 2n·l·o-space,which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model.3) A tetrahedron relationship would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model,and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures.4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases φx,φy,and φz.The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail.The conjectured exact solution is compared with numerical results,and the singularities at/near infinite temperature are inspected.The analyticity in β=1/(kBT) of both the hard-core and the Ising models has been proved only for β0,not for β=0.Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model.  相似文献   

14.
This paper presents a consistent quantum mechanical model of Child-Langmuir (CL) law, including electron exchange-correlation interaction, electrode's surface curvature, and finite emitter area. The classical value of the CL law is increased by a larger factor due to the electron tunneling through the space-charge potential, and the electron exchange-correlation interaction becomes important when the applied gap voltage Vg and the gap spacing D are, respectively, on the order of Hartree energy level, and nanometer scale. It is found that the classical scaling of Vg(3/2) and D(-2) is no longer valid in the quantum regime, and a new scaling of Vg(1/2) and D(-4) is established. The smooth transition from the classical regime to the quantum regime is also demonstrated.  相似文献   

15.
We present a measurement of the standard model CP violation parameter sin2 phi(1) based on a 29.1 fb(-1) data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. One neutral B meson is fully reconstructed as a J/psi K(S), psi(2S)K(S), chi(c1)K(S), eta(c)K(S), J/psi K(L), or J/psi K(*0) decay and the flavor of the accompanying B meson is identified from its decay products. From the asymmetry in the distribution of the time intervals between the two B meson decay points, we determine sin2 phi(1) = 0.99+/-0.14(stat)+/-0.06(syst). We conclude that we have observed CP violation in the neutral B meson system.  相似文献   

16.
We have probed the magnetic field dependence of the electron phase coherence time tau(phi) by measuring the Aharonov-Bohm conductance oscillations of mesoscopic Cu rings. Whereas tau(phi) determined from the low-field magnetoresistance saturates below 1 K, the amplitude of Aharonov-Bohm h/e oscillations increases strongly on a magnetic field scale proportional to the temperature. This provides strong evidence that a likely explanation for the frequently observed saturation of tau(phi) at low temperature in weakly disordered metallic thin films is the presence of extremely dilute magnetic impurities.  相似文献   

17.
We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional(1 D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z=2 and correlation length exponent v=1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension.  相似文献   

18.
According to random-matrix theory, interference effects in the conductance of a ballistic chaotic quantum dot should vanish proportional to (tau(phi)/tau(D))(p) when the dephasing time tau(phi) becomes small compared to the mean dwell time tau(D). Aleiner and Larkin have predicted that the power law crosses over to an exponential suppression proportional to exp((-tau(E)/tau(phi)) when tau(phi) drops below the Ehrenfest time tau(E). We report the first observation of this crossover in a computer simulation of universal conductance fluctuations. Their theory also predicts an exponential suppression proportional to exp((-tau(E)/tau(D)) in the absence of dephasing--which is not observed. We show that the effective random-matrix theory proposed previously for quantum dots without dephasing explains both observations.  相似文献   

19.
We present a measurement of the standard model CP violation parameter sin2 phi(1) (also known as sin2beta) based on a 10.5 fb(-1) data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e(+)e(-) collider. One neutral B meson is reconstructed in the J/psiK(S), psi(2S)K(S), chi(c1)K(S), eta(c)K(S), J/psiK(L), or J/psipi(0) CP-eigenstate decay channel and the flavor of the accompanying B meson is identified from its charged particle decay products. From the asymmetry in the distribution of the time interval between the two B-meson decay points, we determine sin2 phi(1) = 0.58(+0.32)(-0.34)(stat)+0.09-0.10(syst).  相似文献   

20.
The magnetotransport in a nondegenerate quasi-one-dimensional (Q1D) electron system over superfluid helium has been investigated experimentally. The measurements are performed in the presence of a perpendicular magnetic field B up to 2.6 T in the temperature range T=0.48–2.05 K in the system of conducting channels of 100–400 nm width. It is shown that the value of longitudinal magnetoresistance ρxx increases with B. In the electron-gas scattering region (T>0.9 ), the behaviour of ρxx agrees with classical Drude law. In the quantum transport regime, the self-consistent Born approximation (SCBA) theory for a 2D electron system over liquid helium describes the experimental data qualitatively. The deviation due to the difference of the experimentally studied Q1D system of the electrons in a parabolic potential well differs from theoretically analysed one. The experimental data agree with the theoretical calculation for the Q1D electron system at the weak magnetic field and the low temperature.

The negative magnetoresistance of the conducting channels has been observed in both the gas- and the ripplon-scattering region. These effects have been explained by weak carrier localization on the gas atoms at high temperature and by display of the quantum magnetotransport features in a mesoscopic system at low temperature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号