首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the decays D(0)-->pi(-)l(+)nu and D(0)-->K(-)l(+)nu, where l is e or mu, using approximately 7 fb(-1) of data collected with the CLEO III detector. We find R(0) identical with B(D(0)-->pi(-)e(+)nu)/B(D(0)-->K(-)e(+)nu)=0.082+/-0.006+/-0.005. Fits to the kinematic distributions of the data provide parameters describing the form factor of each mode. Combining the form factor results and R(0) gives |f(pi)(+)(0)|(2)|V(cd)|(2)/|f(K)(+)(0)|(2)|V(cs)|(2)=0.038(+0.006+0.005)(-0.007-0.003).  相似文献   

2.
Combining the ratio of experimental kaon and pion decay widths, Gamma(K-->munu (mu)(gamma))/Gamma(pi-->munu (mu)(gamma)), with a recent lattice gauge theory calculation of f(K)/f(pi) provides a precise value for the Cabibbo-Kobayashi-Maskawa quark mixing matrix element |V(us)|=0.2219(25) or if three generation unitarity is assumed |V(us)|=0.222 1(24). Comparison with other determinations of that fundamental parameter, implications, and an outlook for future improvements are given.  相似文献   

3.
We present the first results for the K13 form factor from simulations with 2+1 flavors of dynamical domain wall quarks. Combining our result, namely, f+(0)=0.964(5) with the latest experimental results for Kl3 decays leads to |V us|=0.2249(14), reducing the uncertaintity in this important parameter. For the O(p6) term in the chiral expansion we obtain Delta f=-0.013(5).  相似文献   

4.
We present determinations of the -meson decay constant f(B) and f(B)(s)/f(B) using the MILC Collaboration unquenched gauge configurations, which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m(s)/8. The heavy quark is simulated using nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a more accurate chiral extrapolation to physical up and down quarks than has been possible in the past. We find f(B)=216(9)(19)(4)(6) MeV and f(B)(s)/f(B)=1.20(3)(1).  相似文献   

5.
We study the time-dependent Dalitz plot of D-->K_{S};{0}pi;{+}pi;{-} in B;{0}-->D;{(*)}h;{0} decays, where h;{0} is a pi;{0}, eta, eta;{'}, or omega meson and D;{*}-->Dpi;{0}, using a data sample of 383x10;{6} Upsilon(4S)-->BB[over ] decays collected with the BABAR detector. We determine cos2beta=0.42+/-0.49+/-0.09+/-0.13, sin2beta=0.29+/-0.34+/-0.03+/-0.05, and |lambda|=1.01+/-0.08+/-0.02, where the first error is statistical, the second is the experimental systematic uncertainty, and the third, where given, is the Dalitz model uncertainty. Assuming the world average value for sin2beta and |lambda|=1, cos2beta>0 is preferred over cos2beta<0 at 86% confidence level.  相似文献   

6.
We report on the spectroscopic quadrupole moment measurement of the 7/2(1)(-) isomeric state in (16)(43)S(27) [E*=320.5(5) keV, T(1/2)=415(3) ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, |Q(s)|=23(3) efm(2), is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured |Q(s)|, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape.  相似文献   

7.
We compare the physical potential V(D)(R) of an external quark-antiquark pair in the representation D of SU(N), to the color-Coulomb potential V(coul)(R) which is the instantaneous part of the 44-component: of the gluon propagator in Coulomb-gauge D44(x-->,t)=V(coul)(|x-->|)delta(t)+(noninstantaneous). We show that if V(D)(R) is confining, lim(V(D)(R)=+ infinity, as is believed to hold in the absence of dynamical quarks, then the inequality V(D)(R)0 is the Casimir in the representation D. This implies that -V(coul)(R) is also confining.  相似文献   

8.
Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates <0|q(0)q(0)|0> = -(0.255 GeV)a for u, d quarks, and <0|s s|0> = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.  相似文献   

9.
We present branching fraction measurements of the decays B(+)-->a(1)(+)(1260)K(0) and B(0)-->a(1)(-)(1260)K(+) with a(1)(+/-)(1260)-->pi(-/+)pi(+/-)pi(+/-). The data sample corresponds to 383 x 10(6) BB pairs produced in e(+)e(-) annihilation through the Upsilon(4S) resonance. We measure the products of the branching fractions B(B(+)-->a(1)(+)(1260)K(0)B(a(1)(+)(1260)-->pi(-)pi(+)pi(+))=(17.4+/-2.5+/-2.2) x 10(-6) and B(B(0)-->a(1)(-)(1260)K(+)B(a(1)(-)(1260)-->pi(+)pi(-)pi(-)) = (8.2+/-1.5+/-1.2) x 10(-6). We also measure the charge asymmetries A(ch)(B(+)-->a(1)(+)(1260)K(0) = 0.12+/-0.11+/-0.02 and A(ch)(B(0)-->a(1)(-)(1260)K+) = -0.16+/-0.12+/-0.01. The first uncertainty quoted is statistical and the second is systematic.  相似文献   

10.
We present an unquenched lattice calculation for the B(0)-B(0) transition amplitude. The calculation, carried out at an inverse lattice spacing 1/a=2.22(4) GeV, incorporates two flavors of dynamical quarks described by the O(a)-improved Wilson fermion action and heavy quarks described by nonrelativistic QCD. Particular attention is paid to the uncertainty that arises from the chiral extrapolation, especially the effect of pion loops, for light quarks, which we find could be sizable for the leptonic decay constant, whereas it is small for the B parameters. We obtain f(B(d))=191(10)(+12-22) MeV, f(B(s))/f(B(d))=1.13(3)(+13-2), B(B(d))(m(b))=0.836(27)(+56-62), B(B(s))/B(B(d))=1.017(16)(+56-17), and xi=1.14(3)(+13-2), where the first error is statistical, and the second is systematic, including uncertainties due to chiral extrapolation, finite lattice spacing, heavy quark expansion, and perturbative operator matching.  相似文献   

11.
We present an observation of B-->eta'K*. The data sample corresponds to 232x10(6) BB[over ] pairs collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. We measure the branching fractions (in units of 10(-6)) B(B(0)-->eta'K*0)=3.8+/-1.1+/-0.5 and B(B+-->eta'K*+)=4.9(1.7)(+1.9)+/-0.8, where the first error is statistical and the second systematic. A simultaneous fit results in the observation of B-->eta'K* with B(B-->eta'K*)=4.1(-0.9)(+1.0)+/-0.5. We also search for B-->eta'rho and eta'f(0)(980)(f(0)-->pi+pi-) with results and 90% confidence level upper limits B(B+-->eta'rho+)=8.7(-2.8-1.3)(+3.1+2.3) (<14), B(B(0)-->eta'rho0)<3.7, and B(B(0)-->eta'f(0)(980)(f(0)-->pi+pi-))<1.5. Charge asymmetries in the channels with significant yields are consistent with zero.  相似文献   

12.
We present a measurement of the time-dependent CP-violating asymmetries in B0-->K(*0)gamma(K(*0)-->K(0)(S)pi(0)) decays based on 124 x 10(6) Upsilon(4S)-->BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. In a sample containing 105+/-14 signal decays, we measure S(K(*)gamma)=0.25+/-0.63+/-0.14 and C(K(*)gamma)=-0.57+/-0.32+/-0.09, where the first error is statistical and the second, systematic.  相似文献   

13.
We report on a measurement of the Cabibbo-Kobayashi-Maskawa CP-violating phase gamma through a Dalitz analysis of neutral D decays to K0(S)pi-pi+ in the processes B+/- -->D*K+/-, D*-->Dpi0, Dgamma. Using a sample of 227 x 10(6) BB pairs collected by the BABAR detector, we measure the amplitude ratios r(B)=0.12+/-0.03+/-0.04 and r*(B)=0.17+/-0.10+/-0.03+/-0.03, the relative strong phases delta(B)=(104+/-45(+17+16)(-21-24))degrees and delta*(B)=(-64+/-41(+14)(-12)+/-15) degrees between the amplitudes A(B- -->D*0K-) and A(B- -->D*0)K-), and gamma=(70+/-31(+12+14)(-10-11))degrees. The first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the Dalitz model uncertainty. The results for the strong and weak phases have a twofold ambiguity.  相似文献   

14.
We present a measurement of the branching fraction for the rare decays B-->rhoenu and extract a value for the magnitude of V(ub), one of the smallest elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. The results are given for five different calculations of form factors used to para-metrize the hadronic current in semileptonic decays. Using a sample of 55 x 10(6) BB meson pairs recorded with the BABAR detector at the PEP-II e(+)e(-) storage ring, we obtain B(B0-->rho(-)e(+)nu)=(3.29+/-0.42+/-0.47+/-0.55) x 10(-4) and |V(ub)|=(3.64+/-0.22+/-0.25(+0.39)(-0.56)) x 10(-3), where the uncertainties are statistical, systematic, and theoretical, respectively.  相似文献   

15.
We present a measurement of the ratio of top quark branching fractions R=B(t→Wb)/B(t→Wq), where q can be a d, s, or b quark, in the lepton+jets and dilepton tt final states. The measurement uses data from 5.4 fb(-1) of pp collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure R=0.90±0.04, and we extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V(tb)| as |V(tb)|=0.95±0.02, assuming unitarity of the 3×3 CKM matrix.  相似文献   

16.
We present a determination of the Cabibbo-Kobayashi-Maskawa parameter |V(us)| based on new measurements of the six largest K(L) branching fractions and semileptonic form factors by the KTeV (E832) experiment at Fermilab. We find |V(us)|=0.2252+/-0.0008(KTeV)+/-0.0021(ext), where the errors are from KTeV measurements and from external sources. We also use the measured branching fractions to determine the CP violation parameter |eta(+-)|=(2.228+/-0.005(KTeV)+/-0.009(ext))x10(-3).  相似文献   

17.
We present measurements of D--> KS0 pi and D--> KL0 pi branching fractions using 281 pb(-1) of psi(3770) data at the CLEO-c experiment. We find that B(D0--> KS0 pi 0) is larger than B(D0--> KL0 pi 0), with an asymmetry of R(D0)=0.108+/-0.025+/-0.024. For B(D+--> KS0 pi+) and B(D+--> KL0 pi+), we observe no measurable difference; the asymmetry is R(D+)=0.022+/-0.016+/-0.018. The D0 asymmetry is consistent with the value based on the U-spin prediction A(D0--> K0 pi 0)/A(D0--> K0 pi 0)=-tan2 theta C, where theta C is the Cabibbo angle.  相似文献   

18.
Fan HY  Lu HL 《Optics letters》2006,31(23):3432-3434
Usually a wavelet transform is based on dilated-translated wavelets. We propose a symplectic-transformed-translated wavelet family psi(*)(r,s)(z-kappa) (r,s are the symplectic transform parameters, |s|(2)-|r|(2)=1, kappa is a translation parameter) generated from the mother wavelet psi and the corresponding wavelet transformation W(psi)f(r,s;kappa)=integral(infinity)(-infinity)(d(2)z/pi)f(z)psi(*)(r,s)(z-kappa). This new transform possesses well-behaved properties and is related to the optical Fresnel transform in quantum mechanical version.  相似文献   

19.
We present the first results for neutral-kaon mixing using (2+1)-flavors of domain-wall fermions. A new approach is used to extrapolate to the physical up and down quark masses from our numerical studies with pion masses in the range 240-420 MeV; only SU(2)_{L}xSU(2)_{R} chiral symmetry is assumed and the kaon is not assumed to be light. Our main result is B_{K};{MS[over ]}(2 GeV)=0.524(10)(28) where the first error is statistical and the second incorporates estimates for all systematic errors.  相似文献   

20.
By using 1.8x10{6} DDpairs, we have measured B(D{0}-->pi{-}e{+}nu{e})=0.299(11)(9)%, B(D{+}-->pi{0}e{+}nu{e})=0.373(22)(13)%, B(D{0}-->K{-}e{+}nu{e})=3.56(3)(9)%, and B(D{+}-->K{0}e{+}nu{e})=8.53(13)(23)% and have studied the q;{2} dependence of the form factors. By combining our results with recent lattice calculations, we obtain |V{cd}|=0.217(9)(4)(23) and |V{cs}|=1.015(10)(11)(106).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号