首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
While density matrix renormalization group calculations find stripes on doped n-leg t-J ladders, little is known about the possible formation of stripes on n-leg Hubbard ladders. Here we report results for a 7x6 Hubbard model with four holes. We find that a stripe forms for values of U/t ranging from 6 to 20. For U/t approximately 3-4, the system exhibits the domain wall feature of a stripe, but the hole density is very broadened.  相似文献   

2.
The extended and standard t-J models are computationally studied on ladders and planes, with emphasis on the small J/t region. At couplings compatible with photoemission results for undoped cuprates, half-doped stripes separating pi-shifted antiferromagnetic (AF) domains are found, as in Tranquada's interpretation of neutron experiments. Our main result is that the elementary stripe "building block" resembles the properties of one hole at small J/t, with robust AF correlations across the hole induced by the local tendency of the charge to separate from the spin. This suggests that the seed of half-doped stripes already exists in the unusual properties of the insulating parent compound.  相似文献   

3.
Using a newly developed hybrid Monte Carlo algorithm for the nearest-neighbor (nn) t-J model, we show that antiholons identified in the supersymmetric inverse squared (IS) t-J model are clearly visible in the electron-addition spectrum of the nn t-J model at J=2t and also for J=0.5t, a value of experimental relevance.  相似文献   

4.
We study the single-vortex solution of the t-J model within resonating-valence-bond mean-field theory. We find two types of vortex cores, insulating and metallic, depending on the parameters of the model. The pairing order parameter near both cores have d(x(2)-y(2))+ietad(xy) symmetry. For some range of t/J the calculated tunneling spectrum of the metallic vortex core agrees qualitatively with the STM tunneling data for BSCCO.  相似文献   

5.
We study the binding of a holon and a spinon in the one-dimensional anisotropic t-J model using a Bethe-Salpeter equation approach, exact diagonalization, and density matrix renormalization group methods on chains of up to 128 sites. We find that holon-spinon binding changes dramatically as a function of anisotropy parameter alpha=J( perpendicular)/J(z): it evolves from an exactly deducible impuritylike result in the Ising limit to an exponentially shallow bound state near the isotropic case. A remarkable agreement between the theory and numerical results suggests that such a change is controlled by the corresponding evolution of the spinon energy spectrum.  相似文献   

6.
We have calculated high temperature series to 12th order in inverse temperature for singlet superconducting correlation functions of the 2D t-J model with s, dx2-y2, and dxy symmetry pairs. Our calculations differ from previous work by removing disconnected pieces from the original four-point correlator and by treating the resulting pairing correlator as a matrix. We find the correlation length for dx2-y2 pairing grows significantly with decreasing temperature and develops a broad peak as a function of doping around delta=0.25 for T/J=0.25 at J/t=0.4. The correlation lengths for s and dxy symmetry remain small and do not display peaks. Antiferromagnetic spin correlations at low doping act to suppress the dx2-y2 and dxy superconducting correlation lengths.  相似文献   

7.
We experimentally study the electron transport between edge states in the fractional quantum Hall effect regime. We find an anomalous increase of the transport across the 2/3 incompressible fractional stripe in comparison with the theoretical predictions for the smooth edge potential profile. We interpret our results as a first experimental demonstration of the intrinsic structure of the incompressible stripes arising at the sample edge in the fractional quantum Hall effect regime.  相似文献   

8.
We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the on-site Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-J(eff) ladder in which J(eff) has been adjusted so that the two models have the same spin gap at half filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and points to the importance of the charge-transfer nature of the cuprate systems.  相似文献   

9.
We analyze the high-temperature behavior of the susceptibilities towards a number of possible ordered states in the t-J-V model using the high-temperature series expansion. From all diagrams with up to ten edges, reliable results are obtained down to temperatures of order J, or (with some optimism) to J/2. In the unphysical regime, tJ, these susceptibilities are small and decreasing with decreasing temperature; this suggests that the t-J model does not support high-temperature superconductivity. We also find modest evidence of a tendency toward nematic and d-density wave orders.  相似文献   

10.
A theoretical investigation of boson versions of the t-J and t-J(z) models on the square lattice is carried out. In the t-J(z) model, phase separation between a hole-rich and a hole-free phase occurs, at sufficiently low hole doping, for arbitrarily small values of J(z). The boson t-J model, instead, features a uniform ground state at any doping for J/t< or =1.5. No evidence of a striped ground state is found. Relevance of this study to the corresponding fermion models is discussed. Fermi statistics is found to enhance the tendency toward phase separation; in particular, phase separation is predicted, at low doping, in the fermion t-J(z) model, at all values of J(z).  相似文献   

11.
We study here the onset of charge density wave instabilities in quantum Hall systems at finite temperature for Landau level filling nu>4. Specific emphasis is placed on the role of disorder as well as on an in-plane magnetic field. Beyond some critical value, disorder is observed to suppress the charge density wave melting temperature to zero. In addition, we find that a transition from perpendicular to parallel stripes (relative to the in-plane magnetic field) exists when the electron gas thickness exceeds approximately 60 A. The perpendicular alignment of the stripes is in agreement with the experimental finding that the easy conduction direction is perpendicular to the in-plane field.  相似文献   

12.
Using the coherent density approach, we study the dark incoherent soliton splitting in biased photorefractive-photovoltaic crystals. We show that when the full width half maximum (FWHM) of the optical beam’s intensity is increased, the odd incoherent dark beam splits into an odd-number sequence of multiple dark stripes, whereas the even incoherent dark beam splits into an even-number sequence of multiple dark stripes. We find that when more incoherent solitons are generated, the separations between adjacent dark stripes become smaller and the stripes far away from the center become less visible and that for a given physical system and for a given splitting, the separations between adjacent dark stripes decrease with an increase in the intensity FWHM of the optical beam. On the other hand, the dark incoherent soliton splitting in biased photorefractive-photovoltaic crystals is the dark incoherent screening soliton splitting when the bulk photovoltaic effect is neglectable and the dark incoherent closed- and open-circuit photovoltaic soliton splitting when the external bias field is absent.  相似文献   

13.
Evidence for strong pairing at arbitrarily small J/t is provided in a t-J model on the checkerboard lattice for a specific sign of the hopping amplitude. Destructive quantum interferences suppress Nagaoka ferromagnetism when J/t-->0 and drastically reduce coherent hole motion in the fluctuating singlet background. It is shown that, by pairing in various orbital symmetry channels, holes can benefit from a large gain of kinetic energy.  相似文献   

14.
We have investigated the growth of nanometer-scale gold stripes on reconstructed Au(1 1 1) surface using scanning tunneling microscopy (STM). The experiment was carried out under the conditions of ultrahigh vacuum and room temperature. The stripes were grown by the scanning motion of the STM tip over the area containing more than one step edge with the tunnel resistance less than several tens of mega ohms (MΩs). Unlike the previous reports [J.C. Heyraud, J.J. Metoris, Surf. Sci. 100 (1989) 519; V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, R.J. Wilson, Phys. Rev. Lett. 59 (1987) 2879], we found, by directly comparing the direction of the stripes and the orientation of the underlying lattice, that the gold stripes grow preferentially along [1,−1,0] direction and its threefold symmetric directions at (1 1 1) surface of fcc structure. We also found that the scanning direction of the STM tip does not affect the direction of the stripe growth although the growth rate is suppressed remarkably when the scanning direction is close to [1,1,−2] direction of Au(1 1 1) surface.  相似文献   

15.
From thermodynamics, local spin density approximation+Hubbard U studies and exact diagonalizations of a five-band Hubbard model on CuO2 stripes we find that Li2ZrCuO4 (Li2CuZrO4 in traditional notation) is close to a ferromagnetic critical point. Analyzing its susceptibility chi(T) and specific heat cp(T,H) within a Heisenberg model, we show that the ratio of the 2nd to the 1st neighbor exchange integrals alpha=-J2/J1 approximately 0.3 is close to the critical value alphac=1/4. Comparing with related chain cuprates we explain the rather strong field dependence of cp, the monotonic downshift of the peak of chi(T), and its increase for alpha-->alphac+0.  相似文献   

16.
We report on detailed Hartree–Fock calculations of the unidirectional charge density wave orientation energy induced by a tilted magnetic field. We find that for current experimental samples stripes are oriented perpendicular to the in-plane field, consistent with experiment. For wider two-dimensional electron systems we predict tilt-induced stripe states with variable anisotropy energy sign.  相似文献   

17.
Recent angle-resolved photoemission spectroscopy (ARPES) experiments on cuprate superconductors provide important guidelines for a theory of electronic excitations in the stripe phase. Using a cluster perturbation theory, where short-distance effects are accounted for by exact cluster diagonalization and long-distance effects by perturbation (in the hopping), we calculate the single-particle Green's function for a striped t-J model. The data obtained quantitatively reproduce salient (ARPES) features and may serve to rule out "bond-centered" in favor of "site-centered" stripes.  相似文献   

18.
A microscopic theory is presented for the local moment formation near a nonmagnetic impurity or a copper defect in high-Tc superconductors. We use a renormalized mean-field theory of the t-J model for a doped Mott insulator and study the fully self-consistent, spatially unrestricted solutions of the d-wave superconducting (SC) state in both the spin S=0 and S=1/2 sectors. We find a transition from the singlet d-wave SC state to a spin doublet SC state when the renormalized exchange coupling exceeds a doping dependent critical value. The induced S=1/2 moment is staggered and localized around the impurity. It arises from the binding of an S=1/2 nodal quasiparticle to the impurity. The local density of states is calculated and connections to NMR and STM experiments are discussed.  相似文献   

19.
We study spectral properties of the Fokker-Planck operator that represents particles moving via a combination of diffusion and advection in a time-independent random velocity field, presenting in detail work outlined elsewhere [J. T. Chalker and Z. J. Wang, Phys. Rev. Lett. 79, 1797 (1997)]. We calculate analytically the ensemble-averaged one-particle Green function and the eigenvalue density for this Fokker-Planck operator, using a diagrammatic expansion developed for resolvents of non-Hermitian random operators, together with a mean-field approximation (the self-consistent Born approximation) which is well controlled in the weak-disorder regime for dimension d>2. The eigenvalue density in the complex plane is nonzero within a wedge that encloses the negative real axis. Particle motion is diffusive at long times, but for short times we find a novel time dependence of the mean-square displacement, approximately t(2/d) in dimension d>2, associated with the imaginary parts of eigenvalues.  相似文献   

20.
ABSTRACT

We present a numerical study of a simple density functional theory model of fluid adsorption occurring on a planar wall decorated with a narrow deep stripe of a weaker adsorbing (relatively solvophobic) material, where wall-fluid and fluid-fluid intermolecular forces are considered to be dispersive. Both the stripe and outer substrate exhibit first-order wetting transitions with the wetting temperature of the stripe lying above that of the outer material. This geometry leads to a rich phase diagram due to the interplay between the pre-wetting transition of the outer substrate and an unbending transition corresponding to the local evaporation of liquid near the stripe. Depending on the width of the stripe, the line of unbending transitions merges with the pre-wetting line inducing a two-dimensional wetting transition occurring across the substrate. In turn, this leads to the continuous pre-drying of the thick pre-wetting film as the pre-wetting line is approached from above. Interestingly we find that the merging of the unbending and pre-wetting lines occurs even for the widest stripes considered. This contrasts markedly with the scenario where the outer material has the higher wetting temperature, for which the merging of the unbending and pre-wetting lines only occurs for very narrow stripes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号