首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman scattering experiments on NaxCoO2.yH2O single crystals show a broad electronic continuum with a pronounced peak around 100 cm(-1) and a cutoff at approximately 560 cm(-1) over a wide range of doping levels. The electronic Raman spectra in superconducting and nonsuperconducting samples are similar at room temperature, but evolve in markedly different ways with decreasing temperature. For superconducting samples, the low-energy spectral weight is depleted upon cooling below T* approximately 150 K, indicating the opening of a pseudogap that is not present in nonsuperconducting materials. Weak additional phonon modes observed below T* suggest that the pseudogap is associated with charge ordering.  相似文献   

2.
We addressed the so-far unresolved issue concerning the Co valence in the superconducting bilayer hydrated Na(x)CoO(2) · yH(2)O (x~0.35, y~1.3) using soft x-ray absorption spectroscopy at the Co-L(2,3) and O-K edges. We find that the valence state of the Co lies in a narrow range from +3.3 to +3.4 for all studied Na(x)CoO(2) · yH(2)O samples and their deuterated analogue with T(c)'s ranging from 3.8 to 4.7 K. These valence values are far from the often claimed +3.7, the number based on the Na content only. We propose to modify the phase diagram accordingly, where the basic electronic structure of the superconducting phase is very close to that of the Na(0.7)CoO(2) system, suggesting that the presence of in-plane spin fluctuations could play an important role for the superconductivity.  相似文献   

3.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

4.
The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa(2)Cu(3)O (x) single crystals and Monte Carlo simulations of the anisotropic 3D- XY model. We directly show that T(c) of underdoped YBa(2)Cu(3)O (x) is strongly suppressed from its mean-field value (T(MF)(c)) by phase fluctuations of the superconducting order parameter. For overdoped YBa(2)Cu(3)O (x) fluctuation effects are greatly reduced and T(c) approximately T(MF)(c). We find that T(MF)(c) exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.  相似文献   

5.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

6.
We report the discovery of a new superconducting phase in highly correlated 3d electron systems. The compound is beta-vanadium bronze, beta- Na0.33V 2O5, in which the charge-ordered phase collapses under hydrostatic high pressure and a pressure-induced superconducting phase appears around T(S C)=8 K, P=8 GPa. This report presents the first observation not only of superconductivity in vanadium oxides but also of a phase transition from charge ordered to superconducting on a pressure-temperature (P- T) plane. The phase diagrams seem to have universal aspects across the classes of materials. This indicates a profound physics of superconductivity in highly correlated electron systems.  相似文献   

7.
Poly- and single-crystalline NaxCoO2 has been successfully intercalated with H2O and D2O as confirmed by x-ray diffraction and thermogravimetric analysis. Resistivity, magnetic susceptibility, and specific heat measurements show bulk superconductivity with T(c) close to 5 K in both cases. The substitution of deuterium for hydrogen has an effect on T(c) of less than 0.2 K. Investigation of the resistivity anisotropy of NaxCoO2.yH(2)O single crystals shows (a). almost zero resistivity below T(c), and (b). an abrupt upturn at T(*) approximately 52 K in both the ab plane and the c direction. The implications of our results on the possible superconducting mechanism will be discussed.  相似文献   

8.
We probed the local electronic properties of the mixed-valent Co+4-x triangular lattice in NaxCoO2.yH(2)O by 59Co NMR. We observed two distinct types of Co sites for x > or =1/2, but the valence seems averaged out for x approximately 1/3. Local spin fluctuations exhibit qualitatively the same trend down to approximately 100 K regardless of the carrier concentration x, and hence the nature of the electronic ground state. A canonical Fermi-liquid behavior emerges below approximately 100 K only for x approximately 1/3.  相似文献   

9.
Oriented powder samples of NaxCoO2 are studied by 23Na NMR and SQUID magnetometry. In nominal 0.50相似文献   

10.
We propose a novel mechanism for the modification of T(c) in Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4+x) epitaxial thin films (2212 and 2201) under energetic heavy-ion irradiation. By irradiating films with various oxygen content, we show from the temperature dependence of the resistance that irradiation always produces a doping effect superimposed on the damage caused to the sample. The effect is larger in 2201 than in 2212 thin films. The T(c) decrease observed by irradiating optimally doped films is partially due to this doping effect. Irradiation of semiconducting samples restores metallic superconducting behavior.  相似文献   

11.
Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-Tc superconductor Y1-xCa+Ba2Cu3O6+y over a wide doping range. The threshold of the spin excitation continuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, deduced from electronic Raman scattering in the B1g symmetry on the same samples. Above a critical doping level of delta approximately =0.19, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.  相似文献   

12.
We report the interpretation of the first (51)V data on the low-temperature phase of alpha'-NaV(2)O(5) which presents more than two vanadium valences and compare the data to structural models. The influence of the dependence of the line positions on very small amounts of Na substitution by Ca and Li is reported and discussed. The doping and orientation dependence of the spin gap as seen by (51)T(1) is documented, the evidence points towards a significant anisotropy in the nature of the gap which is sensitive to doping.  相似文献   

13.
We prove the direct link between low-temperature (T) magnetism and high-T Na+ ordering in NaxCoO2 using the example of a so far unreported magnetic transition at 8 K which involves a weak ferromagnetic moment. The 8 K feature is characterized in detail and its dependence on a diffusive Na+ rearrangement around 200 K is demonstrated. Applying muons as local probes this process is shown to result in a reversible phase separation into distinct magnetic phases that can be controlled by specific cooling protocols. Thus the impact of ordered Na+ Coulomb potential on the CoO2 physics is evidenced opening new ways to experimentally revisit the NaxCoO2 phase diagram.  相似文献   

14.
The low-energy electronic structure of the nearly optimally doped trilayer cuprate superconductor Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface and the superconducting d-wave gap and coherence peak are observed and compared with those of single- and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with T(c) for various optimally doped materials.  相似文献   

15.
In this Letter we propose a new phase diagram for the SmFeAs(O(1-x)F(x)) system, based on careful analysis of synchrotron powder diffraction data, SQUID, and muon spin rotation measurements. The tetragonal to orthorhombic structural transition is slightly affected by F content and is retained for the superconducting samples, even at optimal doping. These findings relate the AFM transition on a different ground with respect to the structural one and suggests that orbital ordering could be the driving force for symmetry breaking.  相似文献   

16.
We measure the penetration depth λab(T) in Ba(Fe(1-x)Co(x))(2)As(2) using local techniques that do not average over the sample. The superfluid density ρs(T) ≡ 1/λab(T)2 has three main features. First, ρs (T = 0) falls sharply on the underdoped side of the dome. Second, λab(T) is flat at low T at optimal doping, indicating fully gapped superconductivity, but varies more strongly in underdoped and overdoped samples, consistent with either a power law or a small second gap. Third, ρs (T) varies steeply near Tc for optimal and underdoping. These observations are consistent with an interplay between magnetic and superconducting phases.  相似文献   

17.
We performed zero and transverse field muon spin rotation experiments on a large number of YBa2Cu3O6+x samples. We detect the coexistence of antiferromagnetic (AF) short range magnetism with superconductivity below T(f) < or = 10 K in compositions 0.37 < or = x < or = 0.39. Most muons experience local AF fields, even when a SQUID detects a full superconducting volume fraction, which points to a local minimal interference organization of short AF stripes embedded in the superconductor. A detailed phase diagram is produced and the consequences of the minimal interference are discussed.  相似文献   

18.
徐晓光  王春忠  刘伟  孟醒  孙源  陈岗 《物理学报》2005,54(1):313-316
基于密度泛函理论的第一原理赝势法,研究了Mg在Li(Co,Al)O2中掺杂前后的电子结构的变化.通过能带和态密度的分析,发现Mg掺杂后在价带中引入了电子空穴,同时价带展宽,这两个电子结构的显著变化是引起Li(Co,Al)O2导电率提高的主要机理.通过对Co3d电子态密度的分析发现,在二价Mg掺杂后,Li(Co,Al)O2中的Co价态升高,介于Co3+和Co4+之间.从能带计算出发,进一步定量给出了Co和O的平均价态的变化. 关键词: Li(Co Al)O2 电子结构 第一原理 电导  相似文献   

19.
Takada et al. have reported superconductivity in layered Na(x)CoO(2)yH(2)O (T(c) approximately equal to 5 K). We model a reference neutral CoO2 layer as an orbitally nondegenerate spin-1/2 antiferromagnetic Mott insulator on a triangular lattice and Na(x)CoO(2)yH(2)O as electron doped Mott insulators described by a t-J model. It is suggested that at optimal doping chiral spin fluctuations enhanced by the dopant dynamics lead to a gapful d-wave superconducting state. A chiral resonating valence bond (RVB) metal, a parity and time (PT) reversal violating state with condensed RVB gauge fields, with a possible weak ferromagnetism, and low temperature p-wave superconductivity are also suggested at higher dopings.  相似文献   

20.
The transport of heat and charge in cuprates was measured in single crystals of La(2-x)Sr(x)CuO(4+delta) (LSCO) across the doping phase diagram at low temperatures. In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T-->0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. In heavily underdoped LSCO, where superconductivity can be entirely suppressed with an applied magnetic field, we show that a novel thermal metal-to-insulator transition takes place upon going from the superconducting state to the field-induced normal state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号