首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ x-ray diffraction studies of iron under shock conditions confirm unambiguously a phase change from the bcc (alpha) to hcp (epsilon) structure. Previous identification of this transition in shock-loaded iron has been inferred from the correlation between shock-wave-profile analyses and static high-pressure x-ray measurements. This correlation is intrinsically limited because dynamic loading can markedly affect the structural modifications of solids. The in situ measurements are consistent with a uniaxial collapse along the [001] direction and shuffling of alternate (110) planes of atoms, and are in good agreement with large-scale nonequilibrium molecular dynamics simulations.  相似文献   

2.
Results of inelastic neutron scattering experiments and ab initio molecular dynamics simulations for GeTe – the parent compound of phase-change materials are reported. The inelastic neutron spectra of GeTe powder samples have been determined in the temperature range extending from 300 to 700 K. The phonon peaks undergo thermal shifts resulting from anharmonic effects being weaker for acoustic than optic modes. A small concentration of free charge carries arising from the presence of Ge-vacancies was found not to affect significantly the neutron weighted phonon densities of states of GeTe. The spectral pattern changes qualitatively across the structural phase transition, but the local structure of GeTe remains hardly affected, as confirmed by the analysis of temperature dependence of the pairdistribution function obtained from ab initio molecular dynamics investigations. The present theoretical studies support in a wide extent our experimental observations and also those provided by local probe methods.  相似文献   

3.
基于密度泛函理论(DFT),使用局域密度近似(LDA)研究了Heusler合金Cu1-xFexMnSb的电子结构和反铁磁-铁磁相变。研究发现,两种磁状态下的合金晶格常数随掺杂浓度x变化很好地满足Vegard定理。当x>0.5时,铁磁态合金的总磁矩很好地符合SP规律,然而当x<0.5时,却发生了明显的偏离。由于整个体系存在RKKY和超交换磁耦合的竞争,因而在x=0.25时,我们观察到了独特的反铁磁—铁磁相变。进一步的态密度分析发现,Cu的掺杂浓度可以有效调整铁磁态合金的费米面位置,并且反铁磁态合金由于不同自旋方向的Mn原子的分波态密度相互补偿,总态密度形成了几乎完全对称的自旋向上带和自旋向下带。  相似文献   

4.
基于密度泛函理论(DFT),使用局域密度近似(LDA)研究了Heusler合金Cu1-xFex MnSb的电子结构和反铁磁-铁磁相变.研究发现,两种磁状态下的合金晶格常数随掺杂浓度x变化很好地满足Vegard定理.当x0.5时,铁磁态合金的总磁矩很好地符合SP规律,然而当x0.5时,却发生了明显的偏离.由于整个体系存在RKKY和超交换磁耦合的竞争,因而在x=0.25时,我们观察到了独特的反铁磁—铁磁相变.进一步的态密度分析发现,Cu的掺杂浓度可以有效调整铁磁态合金的费米面位置,并且反铁磁态合金由于不同自旋方向的Mn原子的分波态密度相互补偿,总态密度形成了几乎完全对称的自旋向上带和自旋向下带.  相似文献   

5.
In Ni2+x Mn1?x Ga shape-memory ferromagnetic alloys with coincident magnetic and structural phase transitions, a reversible structural field-induced phase transition was observed at constant temperature and pressure in magnetic fields of about 10 T. Computational results are in qualitative agreement with experiment.  相似文献   

6.
7.
8.
Iron monosilicide is used to study the possibility of the semiconductor-metal kinetic phase trans-formation in nearly magnetic semiconductors. It is shown that the heat released by current flow gives rise to a growth in amplitude of spin fluctuations and the attendant splitting of electronic spectra, which, in turn, brings about gap closure and an avalanche increase in the number of charge carriers.  相似文献   

9.
Photoinduced charge transfer dynamics in the photomagnetic material RbMn[Fe(CN)6], which exhibits a magnetic phase transition with a large hysteresis loop (230-300 K), has been investigated by observing the CN stretching modes, which are sensitive to the valences of the adjacent transition metal ions. Mid-infrared transient absorption measurements were performed between 2013 and 2179 cm−1 to observe the transient and persistent products. The sample in the high-temperature phase was excited by 400 nm laser pulses at the ligand to metal charge transfer band near the high-temperature end of the hysteresis loop. Bleach of the Fe3+-CN-Mn2+ band representing a decrease of the high-temperature phase and increases of the Fe2+-CN-Mn3+ and Fe2+-CN-Mn2+ bands were observed in picosecond time region, indicating a transient production of charge transferred states.  相似文献   

10.
11.
Using the first principle method based on density functional theory, the structural and elastic properties calculations of RbAu have been performed. The results demonstrate that RbAu is stable in the CsCl structure (B2) at ambient pressure, which is in well agreement with the experimental results. And there exists a structural phase transition from CsCl-type structure (B2) to NaTi-type structure (B32) at the transition pressure of approximate 6 GPa. The pressure effects on the elastic properties are discussed and the elastic property calculation indicates elastic instability maybe provide phase transition driving force according to the variations relation of the elastic constant versus pressure.  相似文献   

12.
Hong Zeng 《中国物理 B》2022,31(5):56109-056109
The layered van der Waals antiferromagnetic FePS3 has received considerable attention because long range magnetic ordering can remain with single atoms layer, which offers potential applications in future ultrathin devices. Here, we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa. We observe two structural phase transitions at approximately 4 GPa and 13 GPa, respectively. Moreover, by monitoring spin-related Raman modes, we demonstrate a pressure-induced magnetic structure transition above 2 GPa. These modes disappear accompanying the second structural phase transition and insulator-to-metal transition (IMT), indicating the suppression of long-range magnetic ordering, in agreement with earlier neutron powder diffraction experiments.  相似文献   

13.
14.
Dynamics of a quantum phase transition   总被引:1,自引:0,他引:1  
We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.  相似文献   

15.
The structural phase transition of iodine was observed at about 210 kbar and at room temperature by the high-pressure x-ray diffraction technique using a diamond-anvil cell and a position-sensitive detector. It was found to occur reversibly in both processes of increasing and decreasing pressure.  相似文献   

16.
It is shown that anomalies on the magnetization curves of the samples of terbium ferrite-garnet (Tb3Fe5O12) revealed by Tran Khanh Vien and Dormann [1] are due to the first order spin-reorientation phase transition in iron sublattices. This transition is satisfactorily described by the simple phenomenological theory taking into consideration only anisotropic interactions.  相似文献   

17.
Raman and Mössbauer spectroscopy provide evidence for a transition from a molecular cluster network at x=0 to a continuous network at x=0.35 in Ge1?xSnxSe2 alloy glasses. The nature of this morphological transition involves a reformation of molecular cluster surfaces in the heterogeneous phase to yield a homogeneous phase. The transition is believed to be a universal property of the easy glass formers and can be effected in one of several ways.  相似文献   

18.
The present work is the first example demonstrating that a hydrous zirconia formed by precipitation can yield a nearly pure nanocrystalline monoclinic zirconia at a temperature as low as 320 °C. The X-ray diffraction pattern of the hydrous zirconia heated to 310 °C shows that diffraction peaks begin to emerge and reveals a just crystallized mixture of predominantly monoclinic zirconia (70%) with some tetragonal zirconia(30%). In other words, the hydrous zirconia formed in the present work yields the predominantly monoclinic structure coexisting with the tetragonal one as soon as crystallization starts at low temperature (310 °C). This is an important exception to the general principle that amorphous zirconia precursors first convert to the tetragonal structure of zirconia with increasing calcination temperature and then transform to the monoclinic one at a higher temperature (∼600 °C). At the crystallization temperature (310 °C), the monoclinic crystallite size is about 17 nm and the tetragonal one 28 nm. The monoclinic crystallite is much smaller than the tetragonal one with which it co-exists. This result is also not consistent with the traditional view that a critical particle size effect is responsible for the stability of the tetragonal and monoclinic structures. When the temperature (310 °C) is slightly raised to 320 °C, the XRD pattern shows a nearly pure monoclinic zirconia. The crystallite size of the monoclinic zirconia is around 15 nm, and it does not change appreciably as calcination temperature is increased from 320 to or above 400 °C. The unusual structural phase transition has been investigated by several complementary experimental tools: X-raydiffraction and surface analyses, and infrared and Raman spectroscopies. PACS 81.07.-b; 64.70.Nd; 82.80.-d; 78.67.-n; 81.05.Je  相似文献   

19.
Squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) is found to undergo a second order antiferrodistortive tetragonal to monoclinic phase transition at 97.7°C. The transition temperature for the fully deuterated compound is 243°C. The crystals are optically biaxial negative at room temperature, and the partial birefringence decreases with temperature as (nz ? ny)α(TC ? T)β, where βH = 0.34 ± 0.02 and βD = 0.37 ± 0.04.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号