首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In the quest for new superconductor compounds which adopt the superconducting state at increasingly higher transition temperatures T c , a non-phonon mediated coupling between the charge carriers seems to play a key role. In order to enhance our understanding of such unconventional coupling mechanisms, we studied a new family of heavy fermion (HF) superconductors CeTIn 5 (T: transition metal) whose properties point toward the realization of unconventional superconductivity (SC): the specific heat, thermal conductivity and nuclear spin-lattice relaxation rate of CeIrIn 5 and CeCoIn 5 decrease as a power law of temperature instead of exponentially for T < T c . We report on measurements of the heat capacity of CeIrIn 5 and CeCoIn 5 at hydrostatic pressures p h 1.6 GPa. In both compounds, T c increases with increasing pressure, while the mass of the quasi-particles m eff decreases, as indicated by the ratio C / T | T c . As a working hypothesis based on theories of a nearly antiferromagnetic Fermi-liquid (NAFFL), this may be interpreted as the stabilization of the superconducting state by an increase of the characteristic spin fluctuation temperature T_{\rm SF}\ (T_{\rm SF}\propto k_{\rm F}^{2}/m_{\rm eff}).  相似文献   

2.
We report measurements of the 115In nuclear spin-lattice relaxation rate ( 1/T1) between T = 0.09 and 100 K in the new heavy fermion (HF) compound CeIrIn5. At 0.4 < or = T< or = 100 K, 1/T1 is strongly T-dependent, which indicates that CeIrIn5 is much more itinerant than known Ce-based HFs. We find that 1/T1T, subtracting that for LaIrIn5, follows a (1 / T+straight theta)3/4 variation with straight theta = 8 K. We argue that this novel feature points to anisotropic, due to a layered crystal structure, spin fluctuations near a magnetic ordering. The bulk superconductivity sets in at 0.40 K below which the coherence peak is absent and 1/T1 follows a T3 variation, which suggests unconventional superconductivity with line-node gap.  相似文献   

3.
High-pressure measurements of the resistivity of americium metal are reported to 27 GPa and down to temperatures of 0.4 K. The unusual dependence of the superconducting temperature (T(c)) on pressure is deduced. The critical field [H(c)(0) extrapolated to T=0] increases dramatically from 0.05 to approximately 1 T as the pressure is increased, suggesting that the type of superconductivity is changing as pressure increases. At pressures of approximately 16 GPa the 5f electrons of Am are changing from localized to itinerant, and the crystal structure also transforms to a complex one. The role of a Mott-type transition in the development of the peak in T(c) above 16 GPa is postulated.  相似文献   

4.
High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).  相似文献   

5.
We performed resistivity measurements in CuRh2S4 under quasihydrostatic pressure of up to 8.0 GPa, and found a pressure-induced superconductor-insulator transition. Initially, with increasing pressure, the superconducting transition temperature T(c) increases from 4.7 K at ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With further compression, superconductivity in CuRh2S4 disappears abruptly at a critical pressure P(SI) between 5.0 and 5.6 GPa, when it becomes an insulator.  相似文献   

6.

Among heavy-fermion (HF) superconductors, CeCoIn 5 exhibits a record high value of T c =2.3 K at ambient pressure [1]. CeCoIn 5 belongs to a new class of HF-superconductors that crystallize in the tetragonal HoCoGa 5 -structure. This structure can be regarded as alternating layers of CeIn 3 and CoIn 2 . Bulk CeIn 3 undergoes a transition from an antiferromagnetic (AFM) state at ambient pressure ( T N =10.2 K) to a superconducting state with very low T C =0.15 K at a critical pressure p c =2.8 GPa [2] at which long range magnetic order vanishes. It is, therefore, regarded as a possible candidate for magnetically mediated superconductivity (SC). We report on measurements of the heat capacity of CeCoIn 5 at hydrostatic pressures p h 1.5 GPa. While T c increases with increasing pressure, the effective mass of the quasi-particles m eff decreases, as indicated by the ratio C / T | T c . As a working hypothesis based on theories of a nearly antiferromagnetic Fermi-liquid (NAFFL), this may be interpreted as the stabilization of the superconducting state by an increase of the characteristic spin fluctuation temperature T_{SF} (T_{SF}\propto k_F^2/m_{\rm eff}).  相似文献   

7.
The dependence of the superconducting transition temperature T(c) on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, superconductivity appears at 5.47 K for 20.3 GPa, T(c) rising rapidly to approximately 14 K at 30 GPa. The T(c)(P) dependence to 67 GPa differs significantly from that observed in previous studies where no pressure medium was used. Evidence is given that superconductivity in Li competes with symmetry breaking structural phase transitions which occur near 20, 30, and 62 GPa. In the pressure range 20-30 GPa, T(c) is found to decrease rapidly in a dc magnetic field, the first evidence that Li is a type I superconductor.  相似文献   

8.
We report a study on the interplay between antiferromagnetism (AFM) and superconductivity (SC) in a heavy-fermion compound CeRhIn5 under pressure P=1.75 GPa. The onset of the magnetic order is evidenced from a clear split of 115In nuclear quadrupole resonance spectrum due to the spontaneous internal field below the Néel temperature T(N)=2.5 K. Simultaneously, bulk SC below T(c)=2.0 K is demonstrated by the observation of the Meissner diamagnetism signal whose size is the same as in the exclusively superconducting phase. These results indicate that the AFM coexists homogeneously with the SC at a microscopic level.  相似文献   

9.
We report systematic measurements of ac susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1) on the pressure (P)-induced heavy-fermion superconductor CeRhIn5. The temperature (T) dependence of 1/T(1) at P=1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at T(N)=2.8 K and T(MF)(c)=0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below T(onset)(c)=2 K, but T(MF)(c)=0.9 K, followed by a T(1)T=const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in the low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below T(onset)(c)=2 K.  相似文献   

10.
We report on systematic evolutions of antiferromagnetic (AFM) spin fluctuations and unconventional superconductivity (SC) in heavy-fermion (HF) compounds CeRh(1-x)Ir(x)In(5) via an (115)In nuclear-quadrupole-resonance experiment. The nuclear spin-lattice relaxation rate 1/T(1) has revealed the marked development of AFM spin fluctuations as approaching an AFM ordered state. Concomitantly, the superconducting transition temperature T(c) and the energy gap Delta0 increase drastically from T(c)= 0.4K and 2Delta0/k(B)T(c)=5 in CeIrIn(5) up to T(c) =1.2K and 2Delta0/k(B)T(c) =8.3 in CeRh(0.3)Ir(0.7)In5 , respectively. The present work suggests that the AFM spin fluctuations in close proximity to the AFM quantum critical point are indeed responsible for the strong-coupling unconventional SC in HF compounds.  相似文献   

11.
The pressure dependence of the critical temperature T(c) and upper critical field H(c2)(T) has been measured up to 19 GPa in the layered superconducting material 2H-NbSe2. T(c)(P) has a maximum at 10.5 GPa, well above the pressure for the suppression of the charge density wave (CDW) order. Using an effective two-band model to fit H(c2)(T), we obtain the pressure dependence of the anisotropy in the electron-phonon coupling and Fermi velocities, which reveals the peculiar interplay between CDW order, Fermi surface complexity, and superconductivity in this system.  相似文献   

12.
Chuchu Zhu 《中国物理 B》2022,31(7):76201-076201
Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.  相似文献   

13.
We use heat-capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn(5) at pressures to 2.05 GPa, deep inside its superconducting dome. A fourfold oscillation in the heat capacity at 0.3 K is observed for all pressures, but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle-dependent specific heat, all data, including the sign reversal, imply a d(x(2)-y(2)) order parameter with nodes along [110], which constrains theoretical models of the pairing mechanism in CeIrIn(5).  相似文献   

14.
We report the discovery of a new superconducting phase in highly correlated 3d electron systems. The compound is beta-vanadium bronze, beta- Na0.33V 2O5, in which the charge-ordered phase collapses under hydrostatic high pressure and a pressure-induced superconducting phase appears around T(S C)=8 K, P=8 GPa. This report presents the first observation not only of superconductivity in vanadium oxides but also of a phase transition from charge ordered to superconducting on a pressure-temperature (P- T) plane. The phase diagrams seem to have universal aspects across the classes of materials. This indicates a profound physics of superconductivity in highly correlated electron systems.  相似文献   

15.
We report a pressure-dependent investigation of KMnF(3) by x-ray diffraction up to 30 GPa. The results are discussed in the framework of Landau theory and in relation to the isostructural phase transition in SrTiO(3). The phase transition temperature near 186 K in KMnF(3) shifts to room temperature at a critical pressure of P(c) = 3.4 GPa; the pressure dependence of the transition point follows ΔP(c)/ΔT(c) = 0.0315 GPa K(-1). The transition becomes second order under high pressure, close to the tricritical point. The phase transition is determined by the rotation of MnF(6) octahedra with their simultaneous expansion along the rotation axis. The rotation angle was found to increase to 10.5° at 24 GPa. An additional anomaly was observed at higher pressure around 25 GPa, suggesting a further phase transition.  相似文献   

16.
Pressure studies of the thermodynamics of CeCoIn5 under magnetic fields H parallel to c and H parallel to ab have been made up to P = 1.34 GPa. We recorded the signature of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state for all pressures when H parallel to ab. Also remarkably, the FFLO regime suddenly expands for P = 1.34 GPa. With the help of a microscopic theory for d-wave superconductivity, we have extracted the gyromagnetic ratio g and the Fermi velocities nu(a) and nu(c). Our study is the first evidence for the existence of the FFLO state away from the influence of the antiferromagnetic fluctuations. We find a close parallel between the T-P phase diagram of CeCoIn5 and the T-x phase diagram of the high-Tc cuprates, where x is the hole concentration.  相似文献   

17.
Low temperature specific heat and thermal conductivity measurements on the ambient pressure heavy fermion superconductors CeIrIn5 and CeCoIn5 reveal power law temperature dependences of these quantities below T(c). The low temperature specific heat in both CeIrIn5 and CeCoIn5 includes T2 terms, consistent with the presence of nodes in the superconducting energy gap. The thermal conductivity data present a T-linear term consistent with the universal limit (CeIrIn5), and a low temperature T3 variation in the clean limit (CeCoIn5), also in accord with prediction for an unconventional superconductor with lines of nodes.  相似文献   

18.
 利用低温超高压装置,测量了Hg系样品HgBa2Ca2Cu3O8+y(Hg-1223)超导转变温度Tc在压力作用下的增强效应。压力最高达7.8 GPa,超导起始转变温度常压下为130 K,加压到5.4 GPa时获得最高温度为140 K。在5.4 GPa以下获得dTc/dp为1.85 K/GPa。用压力作用下氧原子位置的改变使载流子浓度提高和CuO2面间的耦合作用来解释高温超导的压力效应。  相似文献   

19.
We report a (29)Si NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi(3) without inversion symmetry. In the SC state at P = 2.7-2.8 GPa, the temperature (T) dependence of the nuclear-spin lattice relaxation rate 1/T(1) below T(c) exhibits a T(3) behavior without any coherence peak just below T(c), revealing the presence of line nodes in the SC gap. In the normal state, 1/T(1) follows a square root T-like behavior, suggesting that the SC emerges under the non-Fermi-liquid state dominated by AFM spin fluctuations enhanced around a quantum critical point. The reason why the maximum T(c) in CeIrSi(3) is relatively high among the Ce-based heavy-fermion superconductors may be the existence of the strong AFM spin fluctuations. We discuss the comparison with the other Ce-based heavy-fermion superconductors.  相似文献   

20.
Methods have been developed to facilitate the data analysis of multiple two-dimensional powder diffraction images. These include, among others, automatic detection and calibration of Debye-Scherrer ellipses using pattern recognition techniques, and signal filtering employing established statistical procedures like fractile statistics.All algorithms are implemented in the freely available program package Powder3D developed for the evaluation and graphical presentation of large powder diffraction data sets.As a case study, we report the pressure dependence of the crystal structure of iron antimony oxide FeSb(2)O(4) (p≤21?GPa, T = 298?K) using high-resolution angle dispersive x-ray powder diffraction. FeSb(2)O(4) shows two phase transitions in the measured pressure range. The crystal structures of all modifications consist of frameworks of Fe(2+)O(6) octahedra and irregular Sb(3+)O(4) polyhedra. At ambient conditions, FeSb(2)O(4) crystallizes in space group P4(2)/mbc (phase I). Between p = 3.2?GPa and 4.1?GPa it exhibits a displacive second order phase transition to a structure of space group P 2(1)/c (phase II, a = 5.7792(4)??, b = 8.3134(9)??, c = 8.4545(11)??, β = 91.879(10)°, at p = 4.2?GPa). A second phase transition occurs between p = 6.4?GPa and 7.4?GPa to a structure of space group P4(2)/m (phase III, a = 7.8498(4)??, c = 5.7452(5)??, at p = 10.5?GPa). A nonlinear compression behaviour over the entire pressure range is observed, which can be described by three Vinet equations in the ranges from p = 0.52?GPa to p = 3.12?GPa, p = 4.2?GPa to p = 6.3?GPa and from p = 7.5?GPa to p = 19.8?GPa. The extrapolated bulk moduli of the high-pressure phases were determined to K(0) = 49(2)?GPa for phase I, K(0) = 27(3)?GPa for phase II and K(0) = 45(2)?GPa for phase III. The crystal structures of all phases are refined against x-ray powder data measured at several pressures between p = 0.52?GPa, and 10.5?GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号