首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of few-fermion systems having \({1/2}\) spin-isospin symmetry is studied using potential models. The strength and range of the two-body potentials are fixed to describe low energy observables in the angular momentum \({L=0}\) state and spin \({S=0,1}\) channels of the two-body system. Successively the strength of the potentials are varied in order to explore energy regions in which the two-body scattering lengths are close to the unitary limit. This study is motivated by the fact that in the nuclear system the singlet and triplet scattering lengths are both large with respect to the range of the interaction. Accordingly we expect evidence of universal behavior in the three- and four-nucleon systems that can be observed from the study of correlations between observables. In particular we concentrate in the behavior of the first excited state of the three-nucleon system as the system moves away from the unitary limit. We also analyze the dependence on the range of the three-body force of some low-energy observables in the three- and four-nucleon systems.  相似文献   

2.
In this paper,we study the symmetry energy and the Wigner energy in the binding energy formula for atomic nuclei.We simultaneously extract the I2 symmetry energy and Wigner energy coefficients using the double difference of "experimental" symmetry-Wigner energies,based on the binding energy data of nuclei with A≥16.Our study of the triple difference formula and the "experimental" symmetry-Wigner energy suggests that the macroscopic isospin dependence of binding energies is explained well by the I2 symmetry energy and the Wigner energy,and further consideration of the I4 term in the binding energy formula does not substantially improve the calculation result.  相似文献   

3.
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.  相似文献   

4.
We introduce two-frequency Wigner distribution in the setting of parabolic approximation to study the scaling limits of the wave propagation in a turbulent medium at two different frequencies. We show that the two-frequency Wigner distribution satisfies a closed-form equation (the two-frequency Wigner–Moyal equation). In the white-noise limit we show the convergence of weak solutions of the two-frequency Wigner–Moyal equation to a Markovian model and thus prove rigorously the Markovian approximation with power-spectral densities widely used in the physics literature. We also prove the convergence of the simultaneous geometrical optics limit whose mean field equation has a simple, universal form and is exactly solvable  相似文献   

5.
Following Zeldes, double-beta decay Q   values are used as a filter for extracting symmetry energy and Wigner energy coefficients across the full range of nuclei, from A=10A=10 to A=246A=246. The symmetry coefficient extracted is found to vary smoothly with A and mass formula coefficients can be determined for the corresponding symmetry and surface symmetry terms. However, the extracted Wigner coefficient has large standard errors and fluctuates dramatically with A, even as regards its sign. Shell corrections remove most of the fluctuations and allow the determination of a reliable Wigner coefficient for the mass formula.  相似文献   

6.
A floating Wigner crystal differs from the standard one by a spatial averaging over positions of the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes into account rotational and/or translational symmetry of the underlying jellium background. We study properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due to degenerate ground states and inter-dot Coulomb coupling. Received 12 September 2001 / Received in final form 24 April 2002 Published online 9 July 2002  相似文献   

7.
We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exact energy spectra and Wigner functions for a non-Hamiltonian toy model on the noncommutative space.  相似文献   

8.
We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizs?cker formula for ground-state energies. In particular, effects from the Wigner energy and shell structure on the symmetry energy are investigated. Strong correlations in the parameter space prevent a clear isolation of the surface contribution. Use of neutron skin information improves the situation. The result of the analysis appears consistent with a rather soft density dependence of the symmetry energy in nuclear matter.  相似文献   

9.
《Physics letters. [Part B]》1999,461(3):287-294
We discuss charge symmetry and charge independence breaking in an effective field theory approach for few-nucleon systems. We systematically introduce strong isospin-violating and electromagnetic operators in the theory. The charge dependence observed in the nucleon–nucleon scattering lengths is due to one-pion exchange and one electromagnetic four-nucleon contact term. This gives a parameter free expression for the charge dependence of the corresponding effective ranges, which is in agreement with the rather small and uncertain empirical determinations. We also compare the low energy phase shifts of the nn and the np system. We present a classification scheme for corrections to the leading order results and show that power counting explains previously made phenomenological observations.  相似文献   

10.
We present the lowest order quantum correction to the semiclassical Boltzmann distribution function, and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation, and the quantum Wigner distribution function is expanded in powers of Planck constant, too. The negative quantum correlation in the Wigner distribution function which is just the quantum correction terms is naturally singled out, thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework. Supported by the National Natural Science Foundation of China (Grant No. 10404037) and the Scientific Research Fund of GUCAS (Grant No. 055101BM03)  相似文献   

11.
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics.In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit. Moreover, we find that for the thermodynamic equilibrium initial state, all terms odd in h are exactly zero. Our results bring important insights to the understanding of entropy in open quantum systems.  相似文献   

12.
S. Kryukov 《Annals of Physics》2005,317(2):474-491
We examine the deformation quantization of a single particle moving in one dimension (i) in the presence of an infinite potential wall, (ii) confined by an infinite square well, and (iii) bound by a delta function potential energy. In deformation quantization, considered as an autonomous formulation of quantum mechanics, the Wigner function of stationary states must be found by solving the so-called ?-genvalue (“stargenvalue”) equation for the Hamiltonian. For the cases considered here, this pseudo-differential equation is difficult to solve directly, without an ad hoc modification of the potential. Here we treat the infinite wall as the limit of a solvable exponential potential. Before the limit is taken, the corresponding ?-genvalue equation involves the Wigner function at momenta translated by imaginary amounts. We show that it can be converted to a partial differential equation, however, with a well-defined limit. We demonstrate that the Wigner functions calculated from the standard Schrödinger wave functions satisfy the resulting new equation. Finally, we show how our results may be adapted to allow for the presence of another, non-singular part in the potential.  相似文献   

13.
作为密度矩阵一种形式的Wigner函数是量子相空间里的分布。用它描述相对论费密子时,它的通常表达形式为4×4矩阵函数。本文得到相对论带电费密子的2×2矩阵形式的Wigner函数以及它所满足的Liouville方程。这一方程与量子电动力学里带电费密子满足的Dirac方程完全等价。在描述中能核碰撞的Walecka模型里,当只有矢量介子(或标量介于取平均场近似)时,核子满足一定形式的Dirac方程。本文的方程也与之等价。还证明了(2×2)Wigner函数与相对论费密子的波函数在描述量子体系上起着同样的作用。量子体系的可观察量的全部知识都可以通过这里的Wigner函数得到。 关键词:  相似文献   

14.
We study the cumulants and their generating functions of the probability distributions of the conductance, shot noise and Wigner delay time in ballistic quantum dots. Our approach is based on the integrable theory of certain matrix integrals and applies to all the symmetry classes ${\beta \in \{1, 2, 4\}}$ of Random Matrix Theory. We compute the weak localization corrections to the mixed cumulants of the conductance and shot noise for β = 1, 4, thus proving a number of conjectures of Khoruzhenko et al. (in Phys Rev B 80:(12)125301, 2009). We derive differential equations that characterize the cumulant generating functions for all ${\beta \in \{1, 2, 4 \} }$ . Furthermore, when β = 2 we show that the cumulant generating function of the Wigner delay time can be expressed in terms of the Painlevé III′ transcendant. This allows us to study properties of the cumulants of the Wigner delay time in the asymptotic limit ${n \to \infty}$ . Finally, for all the symmetry classes and for any number of open channels, we derive a set of recurrence relations that are very efficient for computing cumulants at all orders.  相似文献   

15.
We consider the classical limit of the Nelson model, a system of stable nucleons interacting with a meson field. We prove convergence of the quantum dynamics towards the evolution of the coupled Klein–Gordon–Schrödinger equation. Also, we show that the ground state energy level of \(N\) nucleons, when \(N\) is large and the meson field approaches its classical value, is given by the infimum of the classical energy functional at a fixed density of particles. Our study relies on a recently elaborated approach for mean field theory and uses Wigner measures.  相似文献   

16.
We prove universality at the edge for rescaled correlation functions of Wigner random matrices in the limit n→+∞. As a corollary, we show that, after proper rescaling, the 1th, 2nd, 3rd, etc. eigenvalues of Wigner random hermitian (resp. real symmetric) matrix weakly converge to the distributions established by Tracy and Widom in G.U.E. (G.O.E.) cases. Received: 15 May 1999 / Accepted: 18 May 1999  相似文献   

17.
We explore the validity of the Vlasov equation as a semi-classical approximation of time-dependent Hartree-Fock and time-dependent LDA theories. We discuss the h → 0 limit for the propagation of quantal wavefunctions in terms of classical densities. The h → 0 limit is studied formally by means of its Wigner and Husimi phase-space representations. We consider an application to the valence electron cloud of metal clusters and show a comparison between quantal and Vlasov dynamics in this case.  相似文献   

18.
The problem of the realization of Wigner spin-isospin SU(4) symmetry in nuclei is analyzed on the basis of available experimental data on nuclide masses in the mass-number range 1 ≤ A ≤ 257. Empirical expressions are obtained for the universal functions in the Wigner mass formula. The experimental values of the energy of spin-orbit interaction are determined for the aforementioned nuclides. An alternative mechanism of the origin of the odd-even effect in nuclei having an even mass number associated with a specific property of the Casimir operator is proposed. The results obtained in this study suggest that SU(4) symmetry is broken predominantly by spin-orbit interaction.  相似文献   

19.
Consider an N×N hermitian random matrix with independent entries, not necessarily Gaussian, a so-called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N→∞, the same as that of hermitian random matrices from GUE. We prove this conjecture for a certain subclass of hermitian Wigner matrices. Received: 21 June 2000 / Accepted: 26 July 2000  相似文献   

20.
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号