首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive, rapid assay method has been developed and validated for the estimation of nobiletin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of nobiletin and citalopram (internal standard, IS) from rat plasma with liquid–liquid extraction. Chromatographic separation wa s achieved using an isocratic mobile phase (0.2% formic acid–acetonitrile, 20:80, v/v) at a flow rate of 0.6 mL/min on an Atlantis dC18 column (maintained at 40 ± 1 °C) with a total run time of 2.0 min. The MS/MS ion transitions monitored were 403.2 → 373.0 for nobiletin and 325.2 → 109.0 for IS. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range extended from 0.05 to 51.98 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.96–14.3 and 6.21–12.1, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of tofacitinib in rat plasma. The bioanalytical procedure involves extraction of tofacitinib and itraconazole (internal standard, IS) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system using a gradient mobile phase conditions at a flow rate of 1.0 mL/min and C18 column maintained at 40 ± 1 °C. The eluate was monitored using an UV detector set at 287 nm. Tofacitinib and IS eluted at 6.5 and 8.3 min, respectively and the total run time was 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 182–5035 ng/mL (r2 = 0.995). The intra‐ and inter‐day precisions were in the range of 1.41–11.2 and 3.66–8.81%, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.  相似文献   

4.
A highly sensitive and specific LC-MS/MS-ESI method was developed for simultaneous quantification of albenadazole (ABZ) and ricobendazole (RBZ) in rat plasma (50 μL) using phenacetin as an internal standard (IS). Simple protein precipitation was used to extract ABZ and RBZ from rat plasma. The chromatographic resolution of ABZ, RBZ and IS was achieved with a mobile phase consisting of 5 m m ammonium acetate (pH 6) and acetonitrile (20:80, v/v) at a flow rate of 1 mL/min on a Chromolith RP-18e column. The total chromatographic run time was 3.5 min and the elution of ABZ, RBZ and IS occurred at 1.66, 1.50 and 1.59 min, respectively. A linear response function was established for the ranges of concentrations 2.01-2007 and 6.02-6020 ng/mL for ABZ and RBZ, respectively. The intra- and inter-day precision values for ABZ and RBZ met the acceptance as per FDA guidelines. ABZ and RBZ were stable in battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay was applied to a pharmacokinetic study in rats.  相似文献   

5.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A highly sensitive, specific and simple LC-MS/MS method was developed for the simultaneous estimation of dexlansoprazole (DEX) with 50 μL of human plasma using omeprazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under multiple reaction-monitoring mode using electrospray ionization. A simple liquid-liquid extraction process was used to extract DEX and IS from human plasma. The total run time was 2.00 min and the elution of DEX and IS occurred at 1.20 min. This was achieved with a mobile phase consisting of 0.2% ammonia-acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X-terra RP 18 (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 2 ng/mL for DEX. A linear response function was established for the range of concentrations 2.00-2500.0 ng/mL (r > 0.998) for DEX. The intra- and inter-day precision values for DEX met the acceptance criteria as per FDA guidelines. DEX was stable in the battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

7.
A simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid–liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9–2037 ng/mL (r2 = 0.994). The intra‐ and inter‐day precisions were in the range of 2.06–5.11 and 5.84–13.1%, respectively, in rat plasma and 2.38–7.90 and 6.39–10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of rhein with 100 microL human plasma using celecoxib as an internal standard (IS). The API-4,000 Q-Trap LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of rhein and IS from human plasma with acetonitrile, which yielded consistent recoveries of 36.01 and 65.85% for rhein and IS, respectively. The total chromatographic run time was 5.0 min and the elution of rhein and IS occurred at approximately 1.60 and 3.96 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate (pH 6.0):acetonitrile:methanol (30:58:12, v/v) on an Inertsil ODS-3 column. The method was proved to be accurate and precise at a linearity range of 0.005-5.00 microg/mL with a correlation coefficient (r) of >or=0.995. The lower limit of quantitation was 0.005 microg/mL. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. Rhein was found to be stable in the battery of stability studies. The application of the assay to pre-clinical pharmacokinetic studies confirmed the utility of the assay to derive pharmacokinetic parameters.  相似文献   

9.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of pramipexole (PPX) with 500 microL human plasma using memantine as an internal standard (IS). The API-4000 was operated under multiple-reaction monitoring mode (MRM) using the electrospray ionization technique. Solid-phase extraction was used to extract PPX and IS from human plasma. The resolution of peaks was achieved with 0.01 m ammonium acetate buffer (pH 4.4):acetonitrile (30:70, v/v) on a Discovery CN column. The total chromatographic run time was 3.0 min and the elution of PPX and IS occurred at approximately 2.32 and 2.52, respectively. The MS/MS ion transitions monitored were 212.10 --> 153.10 for PPX and 180.20 --> 107.30 for IS. The method was proved to be accurate and precise at linearity range of 20-3540 pg/mL with a correlation coefficient (r) of > or =0.999. The intra- and inter-day precision and accuracy values found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 0.25 mg PPX tablet.  相似文献   

10.
A sensitive, specific and simple LC‐MS/MS method was developed for the identification and quantification of bivalirudin in human plasma using diazepam as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under multiple‐reaction monitoring mode using electrospray ionization. The sample preparation consisted of an easy protein precipitation sample pretreatment with methanol. Chromatographic separation was achieved on a Zorbax Eclipse plus C18 100 × 2.1 mm column with a mobile phase of water–methanol–0.1% formic acid. The analytes were detected with a triple quadrupole Quantum Access with positive ionization. Ions monitored in the multiple‐reaction monitoring mode were m/z 1091 → 650 for bivalirudin (at 2.70 min) and m/z 285 → 193 for diazepam (at 3.85 min). The developed method was validated in human plasma with a lower limit of quantitation of 20 µg/L for bivalirudin. A linear response function was established for the range of concentrations 20–10,000 µg/L (r > 0.998) for bivalirudin. The intra‐ and inter‐day precision values for bivalirudin met the acceptance criteria as per US Food and Drug Administration guidelines. Bivalirudin was stable in the battery of stability studies, viz. bench‐top, freeze–thaw cycles and long‐term stability. The developed assay method was applied to an intravenous administration study in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of zafirlukast (ZFK) with 500 microL human plasma using valdecoxib as an internal standard (IS). The API-4,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of ZFK and IS from human plasma with ethyl acetate. The resolution of peaks was achieved with 10 mm ammonium acetate (pH 6.4):acetonitrile (20:80, v/v) on a Hypersil BDS C(18) column. The total chromatographic run time was 2.0 min and the elution of ZFK and IS occurred at approximately 1.11 and 1.58 min, respectively. The MS/MS ion transitions monitored were 574.2 --> 462.1 for ZFK and 313.3 --> 118.1 for IS. The method was proved to be accurate and precise at a linearity range of 0.15-600 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 0.15 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 20 mg ZFK tablet.  相似文献   

12.
A highly sensitive and rapid assay method has been developed and validated for the estimation of S‐(−)‐raclopride (S‐RCP) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive ion mode. The assay procedure involves a simple liquid–liquid extraction technique for extraction of S‐RCP and phenacetin (internal standard, IS) from rat plasma. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (80:20, v/v) at a flow rate of 0.30 mL/min on a Phenomenex Prodigy C18 column with a total run time of 4.5 min. The MS/MS ion transitions monitored were 347.2 → 112.1 for S‐RCP and 180.1 → 110.1 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range was extended from 0.05 to 152 ng/mL in rat plasma. The intra‐day and inter‐day precisions were 0.23–10.5 and 3.74–7.29%, respectively. This novel method was applied to a pharmacokinetic study of S‐RCP in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous quantification of ethionamide and ethionamide sulfoxide in human plasma (300 µL) using prothionamide as an internal standard (IS). Solid‐phase extraction was used to extract ethionamide, ethionamide sulfoxide and IS from human plasma. The chromatographic separation of ethionamide, ethionamide sulfoxide and IS was achieved with a mobile phase consisting of 0.1% acetic acid : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Peerless Basic C18 column. The total run time was 3.5 min and the elution of ethionamide, ethionamide sulfoxide and IS occurred at 2.50, 2.18 and 2.68 min, respectively. A linear response function was established for the range of concentrations 25.7–6120 ng/mL (r > 0.998) for ethionamide and 50.5–3030 ng/mL (r > 0.998) for ethionamide sulfoxide. The intra‐ and inter‐day precision values for ethionamide and ethionamide sulfoxide met the acceptance as per FDA guidelines. Ethionamide and ethionamide sulfoxide were stable in battery of stability studies, viz. bench‐top, autosampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography assay method has been developed and validated for the estimation of Orteronel in rat plasma. The bioanalytical procedure involves extraction of Orteronel and phenacetin (internal standard) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system using a gradient mobile phase conditions at a flow rate of 1 mL/min and a C18 column maintained at ambient room temperature. The eluate was monitored using a photodiode array detector set at 242. Orteronel and internal standard eluted at 4.8 and 6.2 min, respectively and the total run time was 9 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 100–3149 ng/mL (r2 = 0.995). The intra‐ and inter‐day precisions were in the ranges of 0.31–7.87 and 3.97–6.35, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of Orteronel in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra‐ and inter‐day precision were in the ranges of 4.73–11.7 and 5.83–8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of abiraterone (ART) in rat plasma. The analytical procedure involves extraction of ART and diclofenac (internal standard, IS) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system with a Betasil C18 column maintained at ambient room temperature and an isocratic mobile phase [acetonitrile–water–10 mm potassium dihydrogen phosphate (pH 3.0), 55:5:40, v/v/v] at a flow rate of 1.00 mL/min with a total run time of 10 min. The eluate was monitored using an UV detector set at 255 nm. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 93.4–3251 ng/mL (r2 = 0.997). The intra‐ and inter‐day precisions were 0.56–4.98 and 3.03–7.18, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of ART in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A lipid‐conjugated, estrogenic derivative molecule, ESC8, compared with other estrogenic molecules, encourages cell death in both ER‐positive and ER‐negative breast cancer cells. A rapid and highly sensitive assay method has been developed and validated for the estimation of a ESC8 in rat plasma using liquid chromatography coupled with mass spectrometry under positive‐ion mode with electrospray ionization. The sample process includes using methanol for precipitation of ESC8 and dextromethorphan (internal standard, IS) from plasma. Chromatographic separation was achieved with methanol–water–formic acid (70:30:0.1% v/v/v) pumped at a flow rate of 0.3mL/min and a C18 column (50 × 2.1 mm i.d., 1.7 μm particle size) with a total run time of 5 min. The m/z ions monitored were 568.5 and 272.1 for ESC8 and IS, respectively. The lower limit of quantitation achieved was 1.08 ng/mL and linearity was observed from 5 to 500 ng/mL. The intra‐ and inter‐day precisions were <4%. The proposed method was successfully applied to a preliminary pharmacokinetic study of ESC8 liposomal formulation following an intraperitoneal administration of 3.67 mg/kg in rats. The concentrations of ESC8 in plasma were quantifiable up to 36 h. The peak concentration of ESC8 was found to be 110.72 ng/mL, the area under the concentration–time curve was 1625.23ng/mL h and the half‐life was 11.72 h.  相似文献   

18.
A highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of nortriptyline (NTP) and 10‐hydroxynortriptyline (OH‐NTP) in human plasma (250 µL) using carbamazepine as an internal standard (IS). LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract NTP, OH‐NTP and IS from human plasma. The total run time was 2.5 min and the elution of NTP, OH‐NTP and IS occurred at 1.44, 1.28 and 1.39 min, respectively; this was achieved with a mobile phase consisting of 20 mm ammonium acetate : acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPURITY C18 column. The developed method was validated in human plasma with a lower limit of quantitation of 1.09 ng/mL for both NTP and OH‐NTP. A linear response function was established for the range of concentrations 1.09–30.0 ng/mL (r > 0.998) for both NTP and OH‐NTP. The intra‐ and inter‐day precision values for NTP and OH‐NTP met the acceptance as per FDA guidelines. NTP and OH‐NTP were stable in a battery of stability studies, i.e. bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A selective, sensitive and rapid LC–MS/MS method has been developed and validated as per US Food and Drug Administration regulatory guidelines for the simultaneous quantitation of colchicine and febuxostat in rat plasma. Colchicine and febuxostat were extracted from the rat plasma using 10% tert-butyl methyl ether in ethyl acetate using colchicine-d6 as an internal standard (IS). The chromatographic separation of colchicine, febuxostat and the IS was achieved using a mobile phase comprising 5 mm ammonium formate and 0.025% formic acid in acetonitrile (20:80, v/v) in isocratic mode on an Eclipse XDB-C18 column. The injection volume and flow rate were 5.0 μl and 0.9 ml/min, respectively. Colchicine and febuxostat were detected by positive electrospray ionization in multiple reaction monitoring mode using transition pairs (Q1 → Q3) of m/z 400.10 → 358.10 and 317.05 → 261.00, respectively. The assay was linear in the ranges of 0.25–254 and 2.60–622 ng/ml for colchicine and febuxostat, respectively. The inter- and intra-day precision values were 0.58–13.0 and 1.03–4.88% for colchicine and febuxostat, respectively. No matrix or carryover effects were observed during the validation. Both analytes were stable on the bench-top, in the autosampler and in storage (freeze–thaw cycles and long-term storage at −80 ° C). A pharmacokinetic study in rats was performed to show the applicability of the validated method.  相似文献   

20.
A sensitive and selective LC‐MS/MS method has been developed and validated for the estimation of novel antidiabetic synthetic flavonoid S002‐853 in rat plasma using centchroman as an internal standard. The method involves a simple two‐step liquid–liquid extraction with diethyl ether. The analyte was chromatographed on a Pierce Spheri‐5, guard cyano column (30 × 4.6 mm i.d., 5 µm) with isocratic mobile phase consisting of methanol–ammonium acetate buffer (pH 4.6, 10 mm ; 90 : 10, v/v) at a flow rate of 0.75 mL/min. The API 4000 triple‐quadrupole LC–MS/MS system was operated under multiple reaction‐monitoring mode. The ionization was performed by electrospray ionization technique in positive ion mode. The chromatographic run time was 6 min and the weighted (1/x2) calibration curves were linear over the range 0.78–400 ng/mL. The limit of detection and lower limit of quantification were 0.195 and 0.78 ng/mL, respectively. The intra‐ and inter‐batch accuracy (%bias) and precision (%RSD) were found to be less than 8.47 and 11.6% respectively. The average absolute recoveries of S002‐853 and internal standard from spiked plasma samples were >90%. S002‐853 was stable for 8 h at ambient temperature, 4 weeks at ?60°C and after three freeze–thaw cycles. The assay was successfully applied to determine the pharmacokinetic parameters in male Sprague–Dawley rats after an oral dose administration at 25 mg/kg. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号