首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intense pulsed ion beam of metal was extracted from a magnetically insulated ion diode operated in a mode of plasma prefill generated from a vacuum arc discharge, anode plasma source. With this ion diode, an intense metal-ion beam of a high melting-point metal (Ta) was obtained. A variety of operational modes appeared, depending on the amount of plasma in the diode gap at the initiation of the high-voltage pulse. The energy, current, and duration time of the ion beam were 20~100 keV, ~1 kA, and 1 μs, respectively. Measurements of ions were performed with an ion energy analyzer or a biased ion collector located at the end of a long drift tube and a Thomson parabola ion spectrometer. The Ta ions in the first to fifth states of ionization were detected accompanied by C+, O+, F+, and H+ . A Ta ion beam current of about half the total ion flux was obtained in this experiment  相似文献   

2.
针对强电场中电场渗透的问题,采用特殊的法拉第筒法测量脉冲束流强度:在法拉第筒入口处用栅网屏蔽强电场,并用在收集板上加正压的方式抑制二次电子。采用解析计算和数值模拟方式对栅网的形状进行了选择,在同样的栅网丝宽和透过率的前提下,通过正六边形栅网的渗透电场最弱,因此选择正六边形栅网。将设计的法拉第筒用于一台真空弧离子源的束流强度测量,获得了该离子源的束流强度波形,其峰值流强约为550 mA;利用测量结果计算了混合离子束在Cu收集板上的二次电子发射系数,约为2.0。  相似文献   

3.
The charge composition of an ion beam from an E-Mevva source is calculated within a model of sequential electron ionization of ions in a vacuum arc plasma. The effect of the plasma initial parameters on the charge composition of the ion beam is studied. Possible charge compositions for more than 30 elements omitted from this article are estimated. Also, the charge composition of the ions is calculated for the ultimate current density of the electron beam.  相似文献   

4.
The charge-state distribution of ions generated in the metal vapor vacuum arc under a wide range of experimental conditions was measured. The experiments were carried out using an ion source in which the metal vapor vacuum arc is used as the method of plasma production and by which a high-quality, high-current beam of metal ions is produced. Charge-state spectra were measured using a time-of-flight diagnostic; arc voltages were also measured. Parameters that were varied include cathode material, arc current, axial magnetic field strength, neutral gas pressure, and arc geometry  相似文献   

5.
真空弧离子源的引出束流具有低能、强流等特点,当离子源工作在单脉冲模式时,被广泛采用的缝-杯式和Alison式发射度测量方法不再适用。采用基于成像板的胡椒孔法测量了真空弧离子源的发射度。初步研制了胡椒孔法发射度测量装置,利用该装置测量了引出电压为64 kV时脉冲束流的发射度和发射相图。在x方向和y方向,测得归一化均方根发射度分别为6.41,4.61 mmmrad。测量结果表明该真空弧离子源在64 kV时的归一化发射度远大于其他类型的离子源的发射度。  相似文献   

6.
The transport of vacuum arc plasmas through a 90° curved magnetic macroparticle filter was investigated using a high-current pulsed arc source with a carbon cathode. The peak arc current was in the kiloampere range, exceeding considerably the level of what has been reported in the literature. The main question investigated was whether magnetic macroparticle filters could be scaled up while maintaining the transport efficiency of small filters. In front of the cathode, we found that arc current dependent total ion saturation currents were in the range from 10% to 23% of the arc current. The best relative transmission was 25% (time integrated output/time integrated input) at a duct wall bias of 12.5 V and at an axial magnetic field of about 100 mT. The measured relative transmission of the used high-current arrangement is comparable to what has been observed with other low-current filters. The absolute measurable ion saturation currents at the filter exit reached 70 A at an arc current of about 1000 A  相似文献   

7.
真空弧放电等离子体含有多种离子成分,并且各离子在空间上具有不同的分布规律.本文针对金属氘化物电极真空弧离子源,搭建了一台紧凑型磁分析装置,用来研究放电等离子体中氘离子与金属离子的空间分布.当离子源弧流为100 A左右时,该装置能有效地传输引出束流,并且具有较好的二次电子抑制效果,可准确获得各离子流强.利用该装置测量并获得了氘化钛含氘电极真空弧放电等离子体内氘离子和钛离子空间分布规律,结果表明:径向上,氘离子和钛离子都呈高斯分布,但氘离子分布均匀,而钛离子相对集中在轴线附近,导致轴线附近氘离子比例最低;轴向上,所有离子数量都以自然指数函数减少,而且相对幅度接近,所以氘离子比例几乎不变.本文研究结果不仅有助于理解真空弧放电等离子体膨胀过程,还可以指导金属氘化物电极真空弧离子源及其引出设计.  相似文献   

8.
Super-hard and elastic carbon nitride films have been synthesized by using an off-plane double-bend filtered cathodic vacuum arc combined with a radio-frequency nitrogen-ion beam source. A nanoindenter was used to determine the micromechanical properties of the deposited films. X-ray photoelectron spectroscopy was used to study the composition and bonding structure of the deposited films. The influence of nitrogen ion energy on the structure and micromechanical properties of the deposited films was systematically studied. As the nitrogen ion energy is increased, the microhardness, Young’s modulus and elastic recovery also increase, reaching a maximum of 47 GPa, 400 GPa, and 87.5%, respectively, at a nitrogen ion energy of 100 eV. Further increase in nitrogen ion energy results in a decrease in microhardness, Young’s modulus and elastic recovery of the deposited films. The formation of five-membered rings, as indicated by XPS, which causes bending of the basal planes and forms a three-dimensional rigid covalent bond network, contributes to the super-hardness, Young’ s modulus and high elastic recovery of the films deposited at a nitrogen ion energy of 100 eV. Revised version: 29 October 2001 / Accepted: 7 November 2001 / Published online: 2 May 2002  相似文献   

9.
A negative-ion-based neutral beam injection (NBI) system is planned for plasma heating of the Large Helical Device (LHD). We have developed a negative ion source, which is 1/3 the scale of the source for the NBI. A magnetic filter held was generated by external permanent magnets to lower the electron temperature in a large-area bucket plasma source (35 cm×62 cm) for efficient H- production. We investigated the magnetic field configuration and found a low electron temperature high density plasma (<1 eV, 1012/cm3) could be achieved with an optimized configuration, The filter strength (Bmax=70 G, line-integral flux=780 G cm at the center axis of the source) was proved to be enough to lower the electron temperature below 1 eV at high arc discharge power (100 kW) and low pressure (0.4 Pa). We injected cesium vapor into the plasma source to enhance H- production efficiency and obtained a 16.2-A H- beam current (31 mA/cm2, 47 kV) using a large-area, four-grid electrostatic extraction system (25 cm×50 cm). This satisfied the development target (>15 A: 1/3 current of LHD ion source). Based on the results, we are designing a negative ion source for the LHD  相似文献   

10.
We have measured the ion flux for different electrode materials in a vacuum arc. The vacuum arc has a point-plane geometry. The ion species in the generated plasma are identified using a time-of-flight (TOF) spectrometer. Ion species that have been generated to date include D+, Mg+, Mg++, Al+, Al++, Al+++, Ti+, Ti++, Ni+, Ni++, Cu+, Cu++, Zn+, Zn++, and In+. We found that in all cases, the ion flux measured is directly proportional to the interelectrode gap spacing and to the arc current. Typical current densities measured were ~300 mA · cm-2 at a distance of 10 cm from the gap for 150-?s pulse. The study will be used for the development of a multiple-arc array source for application to intense ion beam generation.  相似文献   

11.
中性束离子源弧放电具有气体放电等离子体的非线性特性,工作时还会受到气体压强、外磁场、阴极状态等因素的影响,采用晶闸管相控调压技术的弧电源很难实现对这种大功率电弧的稳定的闭环控制。为此,提出了一种多相多重的大电流DC/DC变换器,具有响应速度快、电流上升时间短、电流纹波小等特点,大幅提高了离子源弧放电闭环控制的稳定性。设计了滤波电感能量回馈电路,弧电源可以根据中性束系统的需要使弧电流快速减小0%~100%(可调),然后根据控制信号迅速恢复正常弧电流输出,形成一个弧电流凹坑。电源还采用超级电容储能技术,使电源体积减小了2/3,电网容量小于10kV·A。离子源放电时不会受到电网波动的影响,弧放电更加稳定。实验数据显示:该电源最大输出为220kW/1500A,电流纹波在1%以内,电流上升时间约100μs,最大超调量小于3%,可以满足5 MW中性束离子源及系统的要求。  相似文献   

12.
杨建华  张通和 《中国物理》2005,14(3):556-559
H13 die steel was implanted with tungsten using a metal vapour vacuum arc (MEVVA) ion source. When the pulsed beam current density of tungsten ions increased to 6mA?cm-2, some voids appeared in the high voltage electron microscope (HVEM) micrograph, which would disappear at an annealing temperature of 600℃. HVEM and x-ray diffraction were used for observing the phase structure of the annealed and un-annealed H13 steel after the steel was implanted. Results of wear and hardness tests indicated that whether the voids appear significantly influences the hardness and wear of H13 steel. Reasons for the formation of voids and the relation between the surface mechanical property and voids are discussed in terms of collision theory.  相似文献   

13.
The method of nitriding of metals in an electron beam plasma is used to change the current density and energy of nitrogen ions by varying the electron beam parameters (5–20 A, 60–500 eV). An electron beam is generated by an electron source based on a self-heated hollow cathode discharge. Stainless steel 12Kh18N10T is saturated by nitrogen at 500°C for 1 h. The microhardness is measured on transverse polished sections to obtain the dependences of the nitrided layer thickness on the ion current density (1.6–6.2 mA/cm2), the ion energy (100–300 eV), and the nitrogen-argon mixture pressure (1–10 Pa). The layer thickness decreases by 4–5 μm when the ion energy increases by 100 V and increases from 19 to 33 μm when the ion current density increases. The pressure dependence of the layer thickness has a maximum. These results are in conflict with the conclusions of the theory of the limitation of the layer thickness by ion sputtering, and the effective diffusion coefficient significantly exceeds the well-known reported data.  相似文献   

14.
With the experiments presented in this paper, applications of a retarding field analyzer (RFA) for the measurement of the ion energy E i in a vacuum arc plasma are discussed. The examined plasma was produced by a sinusoidal half-wave vacuum arc current. The experiments were concentrated on evaluating the plasma parameters at the last three milliseconds before current zero. In a current range from 300 Arms to 10 kArms, the ion energy distributions and their peak values were evaluated. With the increase of the arc current, a decrease of the ion energy was found. By additional investigations of the angular distribution of the ion energies, a transition from a collision dominated interelectrode plasma to a freely expanding plasma was observed, depending on the arc current  相似文献   

15.
The production of energetic metal ion beams by vacuum arc ion sources is a subfield of ion beam science and technology that has experienced rapid growth and a great deal of research activity in the last decade or so. Interest in this kind of ion source derives from the high current of metal ions that can be produced-these are the defining and key properties of the source, and they open up areas of application that have not previously been readily accessible. We present a concise history of this field of activity. The background, history, and recent research and development are discussed  相似文献   

16.
A mechanism of generating an extraction field in an ion source in which a polymer track membrane with nanodimensional channels is used as an environment-vacuum interface is considered. A high electric field necessary for the effective extraction of ions from a liquid on the membrane surface into the gas phase is maintained by charging the vacuum surface of the membrane. Charging is provided by oppositely charged secondary ions resulting from the disintegration of primary cluster ions on the extraction electrode. A decrease in the source current observed when the vacuum surface discharges counts in favor of this mechanism. The extracted ion energy distribution in the neighborhood of the extraction zone is obtained by the retarding potential method. Various aspects of ion beam formation in the membrane ion source are discussed.  相似文献   

17.
Plasma processes and electron beam generation in an electron source with a grid plasma cathode are investigated. Experiments are conducted under the conditions of efficient electron extraction and an intense counter ion flux, which break grid stabilization. It is shown that a rise in the gas pressure and in the emitting plasma potential leads to the plasma potential modulation in the frequency range 104–105 Hz. Under the self-oscillation conditions, an electron beam is obtained with a constant current of up to 16 A and an electron energy modulated up to 100% of the accelerating voltage level (100–300 V). An explanation is given for relaxation self-oscillations arising when the plasma potential grows and for the system’s inertial non-linearity arising when the plasma potential induced by the space charge of the counter ion flux lags behind the current of electron-beam-generated ions.  相似文献   

18.
The use of an electronic cooling system at the High Intensity heavy ion Accelerator Facility (HIAF) accelerator complex, which is being developed at the Institute of Modern Physics (China), to improve the efficiency of ion injection into the accelerator and reduce the spread of ion pulses in the beam has been proposed. Electron cooling of the ion beam was carried out due to the interaction of ions with a continuous electron beam with a current of up to 3 A, energy of up to 450 keV, and energy stability at the level of 10–4 or better. The electron beam energy recuperation was carried out at the expense of a power source with a power of 5–15 kW, which was located at the top of a high-voltage column—a high-voltage terminal. The operation of a prototype of power transmission system, which was based on a cascade transformer with a volumetric coil, has been considered. Such a transformer has a relatively low scattering inductance, which can significantly reduce the number of capacitors to compensate for it. It has been shown that this design made it possible to transfer power of up to 40 kW at small dimensions of the transformer and heat dissipation in it was not more than 10 kW.  相似文献   

19.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

20.
The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号