首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

2.
This paper deals with asymptotic behavior for (weak) solutions of the equation utt ? Δu + β(ut) ? ?(t, x), on R+ × Ω; u(t, x) = 0, on R+ × ?Ω. If ?∈L∞(R+,L2(Ω)) and β is coercive, we prove that the solutions are bounded in the energy space, under weaker assumptions than those used by G. Prouse in a previous work. If in addition ?t∈S2(R+,L2(Ω)) and ? is srongly almost-periodic, we prove for strongly monotone β that all solutions are asymptotically almost-periodic in the energy space. The assumptions made on β are much less restrictive than those made by G. Prouse: mainly, we allow β to be multivalued, and in the one-dimensional case β need not be defined everywhere.  相似文献   

3.
For fixed p (0 ≤ p ≤ 1), let {L0, R0} = {0, 1} and X1 be a uniform random variable over {L0, R0}. With probability p let {L1, R1} = {L0, X1} or = {X1, R0} according as X112(L0 + R0) or < 12(L0 + R0); with probability 1 ? p let {L1, R1} = {X1, R0} or = {L0, X1} according as X112(L0 + R0) or < 12(L0 + R0), and let X2 be a uniform random variable over {L1, R1}. For n ≥ 2, with probability p let {Ln, Rn} = {Ln ? 1, Xn} or = {Xn, Rn ? 1} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), with probability 1 ? p let {Ln, Rn} = {Xn, Rn ? 1} or = {Ln ? 1, Xn} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), and let Xn + 1 be a uniform random variable over {Ln, Rn}. By this iterated procedure, a random sequence {Xn}n ≥ 1 is constructed, and it is easy to see that Xn converges to a random variable Yp (say) almost surely as n → ∞. Then what is the distribution of Yp? It is shown that the Beta, (2, 2) distribution is the distribution of Y1; that is, the probability density function of Y1 is g(y) = 6y(1 ? y) I0,1(y). It is also shown that the distribution of Y0 is not a known distribution but has some interesting properties (convexity and differentiability).  相似文献   

4.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

5.
It is shown that if φ(f)  ∝Rdφ(y) f(y) dy is a Markoff random field and Xα are multiplicative functionals of φ (with E(Xα) = 1) which converge locally in L1, then there exists a locally Markoff random field φ1 such that E(exp(iφ1(f))) = limα E(Xαexp(iφ(φ))). We choose φ to be the two-dimensional generalization of the Ornstein-Uhlenbeck velocity process and take Xα proportional to exp(?λ∝R2 : P(φ(y)) : gα(y) dy), where: P(φ(y)) : is a regularized even degree polynomial in φ(y). It is then proved that for an appropriate choice of gα → 1 and small λ, {Xα} does converge locally in L1 and that the corresponding φ1 is stationary.  相似文献   

6.
Let Lk(S) be the product of the ?(k) Dirichlet L-functions formed with characters modulo k. We prove the existence of explicit numerical zero-free regions for Lk(S). The first result is that Lk(S) has at most a single zero in the region {s: σ > 1 ? 1(R log M)}, where R = 9.645908801 and M = max {k, k |t|, 10}. The only possible zero in this region is a simple real zero arising from an L-function formed with a real non-principal character. The second result is that if χ1 and χ2 are distinct real primitive characters modulo k1 and k2, respectively, and if β1 is a zero of L(s, χi), i = 1, 2, then min 1, β2} < 1 ? 1(R1log M1), where R1 = (5 ? √5)(15 ? 10√2), and M1 = max{k1k217, 13}.  相似文献   

7.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

8.
Let {X(t) : t ∈ R+N} denote the N-parameter Wiener process on R+N = [0, ∞)n. For multiple sequences of certain independent random variables the authors find lower bounds for the distributions of maximum of partial sums of these random variables, and as a consequence a useful upper bound for the yet unknown function P{supt∈DnX(t) ≥ c}, c ≥ 0, is obtained where DN = Πk = 1N [0, Tk]. The latter bound is used to give three different varieties of N-parameter generalization of the classical law of iterated logarithm for the standard Brownian motion process.  相似文献   

9.
If φL, we denote by Tφ the functional defined on the Hardy space H1 by
Tφ(?) = π ?(e) φ(e)
. Let Sφ be the set of functions in H1 which satisfy Tφ(?) = ∥Tφand ∥? ∥1 ? 1. It is known that if φ is continuous, then Sφ is weak-1 compact and not empty. For many noncontinuous φ each Sφ is weak-1 compact and not empty. A complete descr ption of Sφ if Sφ is weak-1 compact and not empty is obtained. Sφ is not empty if and only if Sφ = Sψandψ = ¦ ?¦? for some nonzero ? in H1. It is shown that if φ = ¦? ¦? and ? = pg, where p is an analytic polynomial and g is a strong outer function, then Sφ is weak-1 compact. As the consequence, if ? = p, then Sφ is weak-1 compact.  相似文献   

10.
Let X={X(t)}t∈R be a continuous-time strictly stationary and strongly mixing process. In this paper, we prove in the setting of spectral density estimation, at first, under some hard conditions on the spectral density φX (because of aliasing phenomenon), the uniformly complete convergence of the spectral density estimate from periodic sampling. Afterwards, to overcome aliasing, we consider the sampled process {X(tn)}n∈Z, where {tn} is a stationary point process independent from X. The uniform complete convergence of the spectral estimate based on the discrete time observations {X(tk),tk} is also obtained. The convergence rates are also established. To cite this article: M. Rachdi, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

11.
Let E be a finite set of points in Rd. Then {A, E ? A} is a non-Radon partition of E iff there is a hyperplane H separating A strictly from E?A. Or equivalently iff AO is an acyclic reorientation of (MAff(E), O), the oriented matroid canonically determined by E. If (M(E), O) is an oriented matroid without loops then the set NR(E, O) = {(A, E ? A): AO is acyclic} determines (M(E), O). In particular the matroidal properties of a finite set of points in Rd are precisely the properties which can be formulated in non-Radon partitions terms. The Möbius function of the poset A = {A: A ? E, AO is acyclic} and in a special case its homotopy type are computed. This paper generalizes recent results of P. Edelman (A partial order on the regions of Rn dissected by hyperplanes  相似文献   

12.
The composition of two Calderón-Zygmund singular integral operators is given explicitly in terms of the kernels of the operators. For φ?L1(Rn) and ε = 0 or 1 and ∝ φ = 0 if ε = 0, let Ker(φ) be the unique function on Rn + 1 homogeneous of degree ?n ? 1 of parity ε that equals φ on the hypersurface x0 = 1. Let Sing(φ, ε) denote the singular integral operator Sing(φ, ε)f(x0, x) = limδ → 0 ∝∝¦y0¦ ? δf(x0 ? y0, x ? y), Ker(φ)(y0, y) dy0 dy, which exists under suitable growth conditions on ? and φ. Then Sing(φ, ε1) Sing(ψ, ε2)f = ?2π2(∝ φ)(∝ ψ)f + Sing(A, ε1, + ε2)f, where
A(x)=limδ→0∫∫δ?|λ|?δ?1|λ+1|?1+?2n|λ|?2θ(x+λ(x?y))ψ(y)dλdy
(with notation ¦t¦0a = ¦t¦aand ¦t¦1a = ¦t¦asgn t). This result is used to show that the mapping ψA is a classical pseudo-differential operator of order zero if φ is smooth, with top-order symbol
ω0(x,?)=?πiθ(?)∫θ(x?y)sgn y·?dy if ?1=1
,
=?2θ(?)∫θ(x?y)log|y·?|dy if ?1=0
where θ(ξ) is a cut-off function. These results are generalized to singular integrals with mixed homogeneity.  相似文献   

13.
Let Kn= {x ? Rn: (x12 + · +x2n?1)12 ? xn} be the n-dimensional ice cream cone, and let Γ(Kn) be the cone of all matrices in Rnn mapping Kn into itself. We determine the structure of Γ(Kn), and in particular characterize the extreme matrices in Γ(Kn).  相似文献   

14.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

15.
Let {Xt, t ≥ 0} be Brownian motion in Rd (d ≥ 1). Let D be a bounded domain in Rd with C2 boundary, ?D, and let q be a continuous (if d = 1), Hölder continuous (if d ≥ 2) function in D?. If the Feynman-Kac “gauge” Ex{exp(∝0τDq(Xt)dt)1A(XτD)}, where τD is the first exit time from D, is finite for some non-empty open set A on ?D and some x?D, then for any ? ? C0(?D), φ(x) = Ex{exp(∝0τDq(Xt)dt)?(XτD)} is the unique solution in C2(D) ∩ C0(D?) of the Schrödinger boundary value problem (12Δ + q)φ = 0 in D, φ = ? on ?D.  相似文献   

16.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

17.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

18.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

19.
The abstract Hilbert space equation (T?)′(x) = ?(A?)(x), xR+, is studied with a partial range boundary condition (Q+?)(0) = ?+ ? Ran Q+. Here T is bounded, injective and self-adjoint, A is Fredholm and self-adjoint, with finite-dimensional negative part, and Q+ is the orthogonal projection onto the maximal T-positive T-invariant subspace. This models half-space stationary transport problems in supercritical media. A complete existence and uniqueness theory is developed.  相似文献   

20.
A process which has just one jump, and whose time parameter is the positive quadrant [0, ∞] × [0, ∞], is considered. Following Merzbach, related stopping lines are introduced, and the filtration {Ft1,t23} considered in this paper is such that, modulo completion, the σ-field Ft1,t23 is the Borel field on the region
Lt1,t2={(s1,s2); 0?s1?t1or0?s2?t2}
, together with the atom which is the complement in Ω = [0, ∞]2 of Lt1,t2. Optional and predictable projections of related processes are defined, together with their dual projections, and an integral representation for martingales is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号