首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of processing mesoporous silica thin films with supercritical CO2 immediately after casting is investigated, with a goal of using the penetration of CO2 molecules in the tails of fluorinated surfactant templates to tailor the final pore size. Well-ordered films with two-dimensional hexagonal close-packed pore structure are synthesized using a cationic fluorinated surfactant, 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)pyridinium chloride, as a templating agent. Hexagonal mesopore structures are obtained for both unprocessed films and after processing the cast films in CO2 at constant pressure (69-172 bar) and temperature (25-45 degrees C) for 72 h, followed by traditional heat treatment steps. X-ray diffraction and transmission electron microscopy analysis reveal significant increases in pore size for all CO2-treated thin films (final pore diameter up to 4.22 +/- 0.14 nm) relative to the unprocessed sample (final pore diameter of 2.21 +/- 0.20 nm) before surfactant extraction. Similar pore sizes are obtained with liquid and supercritical fluid treatments over the range of conditions tested. These results demonstrate that combining the tunable solvent strength of compressed and supercritical CO2 with the "CO2-philic" nature of fluorinated tails allows one to use CO2 processing to control the pore size in ordered mesoporous silica films.  相似文献   

2.
Porous titania thin films with well-ordered mesostructures are prepared by using Pluronic surfactant P123 as the pore template and aging the films in a high-humidity environment at −6 °C. These structures are stable enough to undergo calcination at 400 °C to generate nanocrystalline TiO2 walls with retention of mesoporosity. Under the aging conditions used, the films have well-ordered mesostructures even with a molar ratio of P123 to titanium (R) as small as 0.006. Because the P123 micelle diameter remains constant across a range of compositions, the pore diameter also remains fixed but the wall thickness of the titania thin films increases as the P123 concentration decreases without decreasing the long-range order of the products. Furthermore, mesoporous titania thin films with hexagonal close-packed channels oriented perpendicular to the substrate can be obtained R values of 0.008–0.012 by sandwiching the as-prepared films between glass slides modified with crosslinked P123. Analysis of the mesophases obtained here indicates that a transition from films containing significant 2D hexagonal channels to 3D hexagonal structure occurs below P123/Ti = 0.008. This does not match the expected volume fraction for this transition based on the mesophases behavior of aqueous P123 at room temperature, suggesting that a more detailed model would be needed to predict mesostructure in titania films aged below the freezing point of water.  相似文献   

3.
Y2O3 nanoparticulate thin films have been prepared using an emulsion liquid membrane (water-in-oil-in-water (W/O/W) emulsion) system, consisting of Span 83 (sorbitan sesquioleate) as a surfactant and VA-10 (2-methyl-2-ethylheptanoic acid) as an extractant (cation carrier). Yttrium ions were extracted from the external water phase and stripped into the internal water phase to make precursor oxalate nanoparticles. Y2O3 nanoparticulate thin film was prepared by casting the W/O emulsion, separated from the external phase and containing the Y oxalate nanoparticles, on a Si substrate, followed by calcination in air. Well-arranged thin-layer nanoparticulate film, consisting of Y2O3 nanoparticles smaller than 20 nm, was obtained via spin coating of the W/O emulsion. A multilayer nanoparticulate thin film was also fabricated via a simple procedure of repeated coating and subsequent calcination.  相似文献   

4.
The penetration of compressed CO(2) in hydrocarbon and fluorocarbon regions of concentrated surfactant mesophases are interpreted from differences in the CO(2)-processed pore expansion of mesoporous silica thin films templated by three surfactants containing varying degrees of hydrocarbon and fluorocarbon functionality. Ordered silica thin films are synthesized for the first time using the 16-carbon (C(16)) partly fluorinated surfactant, 11,11,12,12,13,13,14,14,15,15,16,16,16-tridecafluorocetyl pyridinium bromide (HFCPB), as a templating agent. Silica films templated with surfactants containing a 8-carbon (C(8)) fluorocarbon tail (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl pyridinium chloride (HFOPC)) and a 16-carbon (C(16)) hydrocarbon tail (cetyl pyridinium bromide (CPB)) and HFCPB (C(16)) are processed in compressed CO(2) (69-172 bar, 25 °C and 45 °C) during synthesis. CO(2) processing results in significant pore expansion for films templated with both fluorinated surfactants, while pore expansion is negligible for the hydrocarbon templated material suggesting that preferential CO(2) penetration occurs in the 'CO(2)-philic' fluorocarbon segments of the surfactant template. The effect of substrate surface energy on the final uniformity of the dip-coated films is studied by varying the substrate from unmodified glass to a fluorocarbon-capped substrate. The ability to create dip-coated thin films on low surface energy substrates through favorable interaction of surfactant template tail with the substrate surface functional groups is demonstrated.  相似文献   

5.
Synthesis of Transparent Mesoporous and Mesostructured Thin Silica Films   总被引:2,自引:0,他引:2  
A novel method for obtaining crack-free transparent periodic mesoporous thin films is described. Such films are prepared by a simple sol-gel process using surfactants as templates, with a pre-treatment of the glass substrate. The silicate precursor (tetraethoxysilane) is pre-hydrolyzed under acidic conditions before dissolving directly cetyltrimethylammonium bromide (CTAB). The solution is then spin-coated on pre-treated glass substrate. After the film has been deposited, it is calcined in air. X-ray Diffraction (XRD) has been used to characterize the film before and after thermal treatment. The film consists of a nanocomposite material with a periodic structure. Before calcination the XRD pattern has a sharp peak at d = 3.8 nms which is broadened and shifted by about 3.0 nm after calcination. Infrared transmission spectra have been performed on the films. Analysis of the free OH group stretching vibration indicates the removal of the surfactant after calcination in addition to an enhancement of the specific surface area.  相似文献   

6.
The tailoring of porous silica thin films synthesized using perfluoroalkylpyridinium chloride surfactants as templating agents is achieved as a function of carbon dioxide processing conditions and surfactant tail length and branching. Well-ordered films with 2D hexagonal close-packed pore structure are obtained from sol-gel synthesis using the following cationic fluorinated surfactants as templates: 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl)pyridinium chloride (HFOPC), 1-(3,3,4,4,5,5,6,6,7,8,8,8-dodecafluoro-7-trifluoromethyl -octyl)pyridinium chloride (HFDoMePC), and 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decyl)pyridinium chloride (HFDePC). Processing the sol-gel film with CO2 (69-172 bar, 25 and 45 degrees C) immediately after coating results in significant increases in pore diameter relative to the unprocessed thin films (increasing from 20% to 80% depending on surfactant template and processing conditions). Pore expansion increases with CO2 processing pressure, surfactant tail length, and surfactant branching. The varying degree of CO2 induced expansion is attributed to the solvation of the "CO2-philic" fluorinated tail and is interpreted from interfacial behavior of HFOPC, HFDoMePC, and HFDePC at the CO2-water interface.  相似文献   

7.
In the preparation of macroporous hydrophobic organosilicate films using methyltriethoxysilane (MTES) as precursor, the effects of surfactant addition, surfactant properties and atmospheric humidity were explored. As films dried, preferential evaporation of the ethanol resulted in an increase of the relative water content. This led to development of phase separation between the hydrophobic gel and the aqueous liquid and ultimately the formation of macropores. In the presence of surfactant, surfactant adsorption at the aqueous phase/gel interface affected the extent of phase separation therefore the resulting pores. Span 20 surfactant (HLB = 8.6) has lower compatibility with the aqueous phase than Tween 20 (HLB = 16.7) and effectively increases the hydrophobicity of the gel phase leading to the formation of larger pores. An increase in Span 20 content from 2 wt.% to 5 wt.% also increased pore size. Film porosity also increased significantly with humidity inside the coating chamber. It would appear that the increased porosity is a result of increased phase separation caused by reduced water evaporation at the higher humidity. Highly macroporous (up to 80% porosity), reproducible and uniform films were obtained by incorporating Span 20 surfactant into the coating solutions and performing dip coating at 80% relative humidity.  相似文献   

8.
Thin films of silicate MCM-41 and silicate MCM-48 have been prepared on porous ceramic supports by the hydrothermal method. A comparative study of template removal has been made on supported thin films and on powder. By supercritical fluid extraction (SFE) with CH(3)OH-modified CO(2), at least 78% of the template can be removed from as-synthesized materials at 85 degrees C. X-ray diffraction (XRD) observations indicate that the resulting supported thin films after SFE are structurally stable and ordered with a weak pore contraction. The advantages of SFE over calcination in template removal are presented with a series of results obtained on supported thin films and on powder by XRD and N(2) adsorption-desorption.  相似文献   

9.
Organically functionalized mesoporous silica films have been prepared by a novel synthetic procedure that involves spin-coating of mesostructured silica films and a vapor infiltration (VI) technique, using organosiloxanes, before the removal of surfactant. The VI-treated mesostructured films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and a field emission scanning electron microscope (FE-SEM). Nitrogen adsorption/desorption measurements were performed using films attached with a silicon substrate. The XRD and FE-SEM measurements show that the mesochannel wall, densified and modified with organosilyl groups by the VI treatment, hardly contracts under calcination. FE-SEM observations for the films' cross section support the view that organosiloxane vapor is not deposited on the surface of the film. These results show that organosiloxane molecules penetrate the film and are selectively incorporated into the silica wall. Thus, hydrophobic mesoporous silica films can be synthesized without a reduction in pore size, a result that cannot be attained by conventional grafting and co-condensation methods. The excellent high porosity and hydrophobicity of the mesostructured composite films may be of advantage for next-generation low-k dielectric films.  相似文献   

10.
In-situ thermal ellipsometric analysis is used to elucidate new and fine-scale details on the thermally driven densification, pyrolysis, crystallization, and sintering of dense and ordered mesoporous titania thin films prepared by evaporation-induced self-assembly. The role of the heating schedule, initial film thickness, nature of the substrate and templating agent, solution aging, and presence of water and other additives in the calcination environment is examined. Each of these parameters is shown to have unique and often substantial effects on the final film structure, while the technique itself provides detailed insight into the chemical origin and evolution of these effects. In-situ monitoring and control over the governing chemical processes, such as high-temperature adsorption phenomena that impact nanocrystal growth, is also demonstrated. The evolution of both the porosity and chemical processes occurring inside these materials are evaluated, including extraction of kinetic parameters for the pyrolysis of the template and crystallization of the matrix walls. The latter is shown to be strongly dependent on the presence of mesoscale ordering with ordered cubic films indicating a 1D diffusion-limited crystallization process and dense films following a 3D diffusion-limited process. Less well-ordered mesoporous films, despite similarities in pore volume and pore size distributions, are kinetically more reminiscent of dense films in terms of crystallization. In-situ thermal ellipsometry, by detailing the evolution of the thermally driven chemistry and ceramization that dictate the final film properties, provides immensely important insight into the synthesis and optimization of advanced functional materials based on titania and other metal oxide thin films.  相似文献   

11.
Highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of triblock copolymer Pluronic P123 surfactant species under acidic conditions by sol-gel dip-coating. The effect of the sol aging on thin films organization is systematically studied, and the optimal sol aging time is obtained. The amino-functionalized mesoporous silica thin films exhibit a long-range ordering of 2D hexagonal (p6mm) mesostructure with a large pore size of 8.3 nm, a large Brunauer–Emmett–Teller (BET) specific surface area of 680 m2 g−1 and a large pore volume of 1.06 cm3 g−1 following surfactant extraction as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM), and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for the amino-functionalized mesoporous silica thin films is calculated to be 3.2 amino-groups per nm2. Moreover, the functionalized thin films display improved properties for immobilization of cytochrome c in comparison with pure-silica mesoporous thin films.  相似文献   

12.
Transparent thin (ca. 100 nm) films of silica-surfactant mesostructured materials were deposited on borosilicate glass plates and soda-lime glass tubes from aqueous solutions containing tetraethoxysilane, alkyltrimethylammonium chloride, ammonia, and methanol. By calcination in air, the films became mesoporous (BET surface area of 700-900 m2 g-1) with pore diameter 2.0-2.8 nm.  相似文献   

13.
Alkyl glycosides were used as templating surfactants in the sol–gel processing of thin silica films. The sols were made from a prehydrolyzed silicate solution with the addition of a glucoside or a maltoside surfactant. The sol–gel–xerogel transitions and the silica–sugar interactions were studied by IR ATR spectroscopy. The siloxane condensation rate in the silica/glycoside sol was considerably reduced compared to a pure silica system due to hydrogen bonding interactions between the silanols and the sugar head groups. Thin films were deposited on silicon wafers and characterized by IR transmission, X-ray diffraction and TEM analysis. The size of the sugar head group had a large influence on the type of the mesophases formed. The use of the glucoside surfactant only resulted in temperature unstable lamellar phases, whereas the maltosides at low concentrations assembled in curved mesophases that were stable to template removal by extraction or calcination.  相似文献   

14.
In this paper, silica microspheres were used as template to prepare porous fluorinated polyimide (FPI) thin films from polyamic acid (PAA, precursor of FPI) and silica colloid solution. The strong hydrogen-bonding interaction between silica microspheres and PAA chains have improved the dispersion of silica microspheres in N,N-Dimethylformamide (DMF) solution, resulting in the high weight content of silica template in PAA/silica colloid solution, and thus giving rise to the formation of porous FPI films with maximum porosity of 35%. The interior microstructures of the resultant porous FPI thin films were investigated. It is found that the porous FPI thin films have interconnected “ink-bottle-type” porous structure, and the pore size, porosity could be precisely controlled by the diameter and weight content of silica microspheres, respectively. Although both the tensile strength and young modules declined with the increasing porosity, the high level void of the porous FPI films endowed the FPI ultralow dielectric constant of 1.84 when the porosity increased to 35%. Furthermore, the mechanical and dielectric properties of the porous FPI films were closely related to the microstructures and porosity, indicating the desired properties could be controlled to meet the application in the microelectronics.  相似文献   

15.
Single molecule spectroscopy is applied in studies of diffusion and surface adsorption in sol-gel-derived mesoporous silica thin films. Mesoporous films are obtained by spin casting surfactant-templated sols onto glass substrates. Small-angle X-ray diffraction results are consistent with hexagonally ordered mesophases in as-synthesized (i.e., surfactant-containing) films. Upon calcination, a 30% contraction and disordering of these structures occurs. Nile Red is used as a fluorescent probe of both the as-synthesized and calcined films. It is loaded into the samples at subnanomolar levels either prior to spin casting or after calcination. Fluorescence imaging and single-point fluorescence time transients show the dye molecules to be relatively mobile in the as-synthesized samples. In contrast, the molecules appear entrapped at fixed locations in dry calcined films. In calcined films rehydrated under high humidity conditions, the Nile Red molecules again become mobile. Time transients obtained from the as-synthesized and rehydrated samples provide clear evidence for frequent reversible adsorption of the dye to the silica surfaces. Autocorrelations of the time transients provide quantitative data on the mean diffusion coefficients (D = 2.4 x 10(-10) and 2.6 x 10(-10) cm2/s) and mean desorption times (1/k = 25 and 40 s) for the as-synthesized and rehydrated films, respectively. The results prove both water and surfactant play important roles in governing matrix interactions and mass transport.  相似文献   

16.
Ellipsometric porosimetry (EP) is a handy technique to characterize the porosity and pore size distribution of porous thin films with pore diameters in the range from below 1 nm up to 50 nm and for the characterization of porous low-k films especially. Atomic layer deposition (ALD) can be used to functionalize porous films and membranes, e.g., for the development of filtration and sensor devices and catalytic surfaces. In this work we report on the implementation of the EP technique onto an ALD reactor. This combination allowed us to employ EP for monitoring the modification of a porous thin film through ALD without removing the sample from the deposition setup. The potential of in situ EP for providing information about the effect of ALD coating on the accessible porosity, the pore radius distribution, the thickness, and mechanical properties of a porous film is demonstrated in the ALD of TiO(2) in a mesoporous silica film.  相似文献   

17.
利用超分子自组装法在玻璃表面制备了聚合前后DMTB/SiO2和DMCB/SiO2复合薄膜.在所制备的复合薄膜中,表面活性剂DMTB和DMCB既作结构导向剂,又作聚合单体.用FTIR,XRD和TEM等表征了薄膜的结构.结果表明,所制备的薄膜具有有机-无机有序交替的层状结构.DMCB/SiO2和DMTB/SiO2复合薄膜有机层与无机层间的距离分别为聚合前3.48和3.44nm,聚合后2.84和2.92nm.  相似文献   

18.
A novel method of synthesis consisting of the production of ordered arrangements of tubular pores distributed inside SnO2 annealed thin films, which are prepared from a rotating disk process carried out at 2000-3500 rpm, is herein described. The main novelty is that no surfactant molecules are required in order to create these ordered pore structures; the templating entities are supramolecular assemblies of oligomeric chains formed during the extra-long aging allowed to the sol-gel processing of tin(IV) tetra-tert-amiloxide, Sn(OAm(t))4, chelated with acetylacetone molecules. Low angle X-ray diffraction peaks of SnO2 thin films calcined at 500 degrees C clearly certify the existence of ordered mesostructures when employing the right H2O/Sn(OAm(t))4 molar ratio during the SnO2 sol-gel synthesis. The final SnO2 ordered mesostructures are reminiscent of those linked to MCM-41 and SBA-15 substrates. Pore-size distribution analyses proceeding from N2 sorption isotherms at 76 K on the SnO2 thin films calcined at 500 degrees C unequivocally confirm the presence of tubular mesopores (mode pore sizes ranging from 5 to 7 nm). The thicknesses of the SnO2 films range from 80 to 150 nm after performing a drying process at 100 degrees C and from 70 to 125 nm after calcining in air at 500 degrees C; these film thicknesses show, in general, decreasing trends when either the spinning rate or the H2O/(Sn(OAm(t))4 ratio is increased.  相似文献   

19.
TiO2 thin film photocatalysts coated onto soda lime glass were prepared by a dip coating process using a highly viscous solvent. The source of the TiO2 was tetraisopropyl orthotitanate, and -terpineol was used as the solvent. Two types of thin film preparation procedures based on dip coating (a sol-gel system and thermal decomposition system) were used to prepare the samples. TiO2 thin films were obtained after calcination at 450°C for 1 hour. The film thickness obtained with a single dipping was proportional to the viscosity of the dip coating solutions. The obtained thin films were transparent with a thickness of 1 m. The crystal form of the obtained photocatalyst films was anatase alone. The thin films were formed with aggregated nano-sized TiO2 single crystals (7–15 nm). The photocatalytic activity of the TiO2 thin films, as evaluated by the photooxidation of NO (1 ppm) in dry air, was as high as our previous TiO2 thin films prepared by the sol-gel method.  相似文献   

20.
Sol-Gel derived mesoporous titania films with controlled pore sizes were prepared by surfactant templating. The coating sol was obtained by hydrolysis of Ti(OC4H9)4 in ethanol/HCl solution. The gel films, prepared by spin coating on glass substrate, were dried after immersion in surfactant solutions under an atmospheric pressure. The porous films of anatase with columnar and rectangular structure were obtained after annealing at 500°C. The annealed films are transparent and 80–140 nm in thickness. Refractive indices of the films with surfactant immersion were 10–20% lower than those of the films without immersion. The spacing between the columns or rectangular grains and the grain shape were found to depend on the surfactant species. The pohoto-catalytic activity of the films for the oxidation of NO x was improved by the surfactant modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号