首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A simple, rapid, sensitive, and accurate method for simultaneous electrochemical determination of procaine and its metabolite (p-aminobenzoic acid, PABA) for pharmaceutical quality control and pharmacokinetic research was developed using a graphite paste electrode. The differential pulse voltammetric results revealed that procaine and p-aminobenzoic acid, respectively, showed well-defined anodic oxidation peaks on a carbon paste electrode with a current peak separation of 155 mV at a scan rate of 100 mV s−1. This well separation of the current peaks for these two compounds in voltammetry enables us to simultaneously determine them. Good linearity (r > 0.998) between oxidation peak current and concentration was obtained in the range of 5.0 × 10−7–5.0 × 10−5 M for procaine and 5.0 × 10−7–2.0 × 10−5 M for PABA in pH 4.50 acetate buffer solution. The detection limit for both analytes is 5 × 10−8 M (S/N = 3:1). The present voltammetric method has been successfully used to determine trace p-aminobenzoic acid in procaine hydrochloride injection and procaine in plasma with a linear relationship of current to its concentration ranging from 1.0 × 10−6 to 5.0 × 10−5 M (correlation coefficient of 0.9981) with a low detection limit of 5.0 × 10−7 M (S/N = 3:1). This validated method is promising to the study of pharmacokinetics in Sprague–Dawley rat and rabbit plasma after an intravenous administration of procaine hydrochloride injection.  相似文献   

2.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

3.
The feasibility of using polymeric membrane fluoride-selective electrodes based on zirconium(IV) 5,10,15,20-tetraphenylporphyrin as a detector in a flow-injection analysis (FIA) system for glucose determination was examined. The optimization of enzymatic reactions, FIA system configuration and enzyme-immobilization process was performed. It was shown that the resulting flow-injection system exhibits good working parameters, such as reproducibility, linear range of glucose concentration (3 × 10−3–10−1 M), sampling rate (60 samples per minute) and lifetime (over 1 month). The performance of the polymeric membrane electrode was similar to that of a crystalline LaF3 electrode. The results of glucose determination in synthetic samples with the proposed system show good agreement with real glucose concentrations.  相似文献   

4.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

5.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

6.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

7.
 Using 9-allylaminoacridine synthesized in this laboratory as the fluorescent agent an fiber optode for p-nitrophenol (p-Np) has been prepared. 9-Allylaminoacridine has a polymerizable olefin unit and can be copolymerized with hydrophilic monomer 2-hydroxypropyl methacrylate (HPMA) under UV irradiation. On silanized activated glass surface a 9-allylaminoacridine containing HPMA membrane has been covalently bound forming a stable optode membrane free of leaching problem. The analytical performance characteristics including reversibility, reproducibility, short-term stability and interference have been evaluated. The optode has relatively long lifetime with the spectral response characteristics not changing after one month use. The plot of log(I 0/I − 1) versus logarithm of the p-NP solution concentration can piecewise be fitted with the straight line of the form of Stern-Volmer equation, with a detection limit of 9.0 × 10−8 mol L−1. The relative standard deviation obtained from eight separate determinations for two p-NP concentrations, 1.0 × 10−5 and 4.0 × 10−4 mol L−1, are 2.36% and 1.34%, respectively. p-Np can be determined in water samples with satisfactory recoveries. Received April 13, 2000. Revision September 28, 2000.  相似文献   

8.
A novel hydrogen peroxide (H2O2) biosensor was developed by immobilizing hemoglobin on the gold colloid modified electrochemical pretreated glassy carbon electrode (PGCE) via the bridging of an ethylenediamine monolayer. This biosensor was characterized by UV-vis reflection spectroscopy (UV-vis), electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Hb exhibited excellent electrocatalytic activity for hydrogen peroxide. The Michaelis–Menten constant (K m) was 3.6 mM. The currents were proportional to the H2O2 concentration from 2.6 × 10−7 to 7.0 × 10−3 M, and the detection limit was as low as 1.0 × 10−7 M (S/N = 3).  相似文献   

9.
A simple flow injection chemiluminescence (CL) method was developed for the determination of atenolol using Eu3+ as the probe. It was found that the weak CL generated by the KMnO4-Na2SO3 reaction can be significantly enhanced by the atenolol-Eu3+ complex. The experimental conditions were optimized. The CL intensity was linearly related to atenolol concentration in the range from 8.0 × 10−9 to 1.0 × 10−5 g mL−1. The detection limit (3s b) was 3 × 10−9 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 atenolol solution was 2.4% (n = 11). The method has high sensitivity, wide linear range, inexpensive instrumentation, and has been applied to the determination of atenolol in spiked human urine and plasma samples with recoveries within the range 95.5–104.0%. Supplementary material to this paper is available in electronic form at Electronic supplementary material: Discussion of the reaction mechanism and additional figures are available online as electronic supplementary material (ESM) at . Correspondence: Jianxiu Du, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, P.R. China  相似文献   

10.
Determination of the effective components in traditional Chinese medicine is one of the key steps for its identification. In this paper a novel and sensitive chemiluminescence (CL) method for the determination of rhein coupled with flow-injection analysis (FIA) is developed. It is based on the strong sensitizing effect on the weak CL reaction between luminol and ferricyanide in alkaline solution. Under optimal experimental conditions, the relative CL intensity is proportional to the concentration of rhein in the range of 7.0 × 10−12–7.0 × 10−10 mol L−1 and 1.0 × 10−9–4.0 × 10−5 mol L−1, the detection limit is 1.478 × 10−13 mol L−1, and the relative standard deviation (RSD) for 9 parallel measurements of 1.408 × 10−7 mol L−1 rhein is 3.4%. The method was successfully applied to the determination of rhein in pharmaceutical preparations. The possible mechanism of CL is also briefly discussed.  相似文献   

11.
Bulk screen-printed electrodes (bSPEs) modified with zirconium phosphate (ZrP) and Meldola blue (MB) and by electrochemical deposition of a Reineckate film (bMBZrPRs-SPEs) have been constructed and used as NADH sensors. Cyclic voltammetric investigation of these bulk electrochemically modified screen-printed electrodes revealed stable catalytic activity in oxidation of the reduced form of the coenzyme nicotinamide adenine dinucleotide (NADH). Flow-injection analysis (FIA) coupled with amperometric detection confirmed the improved stability of the bMBZrPRs-SPEs (10−4 mol L−1 NADH, %RSD = 4.2, n = 90, pH 7.0). Other conditions, for example applied working potential (+50 mV relative to Ag|AgCl), flow rate (0.30 mL min−1) and pH-dependence (range 4.0–10.0) were evaluated and optimized. A glycerol biosensor, prepared by immobilizing glycerol dehydrogenase (GDH) on the working electrode area of a bMBZrPRs-SPE, was also assembled. The biosensor was most stable at pH 8.5 (%RSD = 5.6, n = 70, 0.25 mmol L−1 glycerol). The detection and quantification limits were 2.8 × 10−6 and 9.4 × 10−6 mol L−1, respectively, and the linear working range was between 1.0 × 10−5 and 1.0 × 10−4 mol L−1. To assess the effect of interferences, and recovery by the probe we analyzed samples taken during fermentation of chemically defined grape juice medium and compared the results with those obtained by HPLC.  相似文献   

12.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

13.
The electrode characteristics and selectivities of PVC-based thiocyanate selective polymeric membrane electrode (PME) incorporating the newly synthesized zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,8,12,14-tetraene-9,12-N2-1,5-O2 (I 1 ) and zinc complex of 6,7:14,15-Bzo2-10,11-(4-methylbenzene)-[15]-6,14-diene-9,12-dimethylacrylate-9,12-N2-1,5-O2 (I 2 ) are reported here. The best response was observed with the membrane having a composition of I2:PVC:o-NPOE:HTAB in the ratio of 6:33:59:2 (w/w; milligram). This electrode exhibited Nernstian slope for thiocyanate ions over working concentration range of 4.4 × 10−7 to 1.0 × 10−2 mol L−1 with detection limit of 2.2 × 10−7 mol L−1. The performance of this electrode was compared with coated graphite electrode (CGE), which showed better response characteristics w.r.t Nernstian slope 59.0 ± 0.2 mV decade−1 activity, wide concentration range of 8.9 × 10−8 to 1.0 × 10−2 mol L−1 and detection limit of 6.7 × 10−8 mol L−1. The response time for CGE and PME was found to be 8 and 10 s, respectively. The proposed electrode (CGE) was successfully applied to direct determination of thiocyanate in biological and environmental samples and also as indicator electrode in potentiometric titration of SCN ion.  相似文献   

14.
A new H2O2 biosensor was fabricated on the basis of nanocomposite films of hemoglobin (Hb), silver nanoparticles (AgNPs), and multiwalled carbon nanotubes (MWNTs)–chitosan (Chit) dispersed solution immobilized on glassy carbon electrode (GCE). The immobilized Hb displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ′) of −22.5 mV in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) in the Chit–MWNTs film was evaluated as 2.58 s−1 according to Laviron’s equation. The surface concentration (Γ*) of the electroactive Hb in the Chit–MWNTs film was estimated to be (2.48 ± 0.25) × 10−9 mol cm−2. Meanwhile, the Chit–MWNTs/Hb/AgNPs/GCE demonstrated excellently electrocatalytical ability to H2O2. Its apparent Michaelis–Menten constant (K Mapp) for H2O2 was 0.0032 mM, showing a good affinity. Under optimal conditions, the biosensors could be used for the determination of H2O2 ranging from 6.25 × 10−6 to 9.30 × 10−5 mol L−1 with a detection limit of 3.47 × 10−7 mol L−1 (S/N = 3). Furthermore, the biosensor possessed rapid response to H2O2 and good stability, selectivity, and reproducibility.  相似文献   

15.
A new spectrofluorimetric method was developed for the determination of trace amounts of coenzyme A (CoA). In the presence of periodic acid (H5IO6), CoA can remarkably enhance the fluorescence intensity of the Tb3+–ciprofloxacin (CIP) complex at 545 nm in a buffer solution at pH 5.4; the enhanced fluorescence intensity of the Tb3+ ion is proportional to the concentration of CoA. The optimal conditions for the determination of CoA were also investigated. The linear range and the detection limit for the determination of CoA were 6.08 × 10−6–1.64 × 10−5 and 2.1 × 10−8 mol L−1, respectively. This method is simple, practical and relatively free of interference from coexisting substances, and can be successfully applied to assess CoA in injection and biological samples. Moreover, the enhancement mechanism of the fluorescence intensity of the CoA–Tb3+–CIP system in the presence of H5IO6 is also discussed.  相似文献   

16.
A glassy carbon electrode (GCE) modified with the film composed of chitosan incorporating cetylpyridine bromide is constructed and used to determine uric acid (UA) and ascorbic acid (AA) by differential pulse voltammetry (DPV). This modified electrode shows efficient electrocatalytic activity and fairly selective separation for oxidation of AA and UA in mixture solution. UA is catalyzed by this modified electrode in phosphate buffer solution (pH 4.0) with a decrease of 80 mV, while AA is catalyzed with a decrease of 200 mV in overpotential compared to GCE, and the peak separation of oxidation between AA and UA is 260 mV, which is large enough to allow the determination of one in presence of the other. Under the optimum conditions, the anodic peak currents (I pa) of DPV are proportional to the concentration of UA in the range of 2.0 × 10−6 to 6.0 × 10−4 M, with the detection limit of 5.0 × 10−7 M at a signal-to-noise ratio of 3 (S/N = 3) and to that of AA in the range of 4.0 × 10−6 to 1.0 × 10−3 M, with the detection limit of 8.0 × 10−7 M (S/N = 3).  相似文献   

17.
A novel flow injection procedure has been developed for the determination of tannic acid based on the inhibition of the chemiluminescences in luminol-H2O2-Manganese tetrasulfonatophthalocyanine (MnTSPc) system by tannic acid. The method is simple, rapid and sensitive with a detection limit of 8 × 10−10 mol·L−1 and a linear range of 7 × 10−9–5 × 10−6 mol·L−1. The relative standard deviation is 1.9% for eleven measurements of 5 × 10−7 mol·L−1 tannic acid. The method has been successfully applied to the determination of tannic acid in real Chinese gall and hop pellets samples.  相似文献   

18.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

19.
A new Schiff-base ligand [N, N′, N″-Tri- (2,4-dihydroxyacetophenone) – triaminotriethylamine (TDATA)] with a tripodal structure was synthesized. Its fluorescence intensity with the europium(III) complex was increased about 178-fold in the presence of sodium acetate (NaAc) and about 126-fold in the presence of sodium phosphate (Na3PO4) solution. After adding the organic solvent dimethylsulfoxide (DMSO) to the above system, which leads to Eu3+ the fluorescence was further enhanced about 12-fold. Spectrofluorimetric determination of trace amounts of Eu3+ based on the phenomenon was performed. The excitation and emission wavelength is 365 nm and 615 nm, respectively. Under optimum conditions, the fluorescence intensities vary linearly with the concentration of Eu3+ in the range of 4.9 × 10−12–3.2 × 10−6 mol · L−1 with a detection limit of 4.5 × 10−12 mol · L−1 (for the TDATA-NaAc-DMSO system) or 6.2 × 10−11–8.6 × 10−6 mol · L−1 with a detection limit of 6.0 × 10−11 mol · L−1 (for the TDATA-Na3PO4-DMSO system). Interferences of some rare earth metals and other inorganic ions are described. The method is a selective, sensitive, rapid and simple analytical procedure for the determination of europium(III) in a high purity yttrium oxide and synthetic sample. The mechanism for the fluorescence enhancement is also discussed.  相似文献   

20.
We describe a sol-gel approach by which iron hexacyanoferrate is immobilized in silica in a manner suited to investigation by electrochemistry in the absence of a contacting liquid phase. Such physicochemical parameters as concentration of redox sites (C o) and apparent (effective) diffusion coefficient (D app) are estimated by performing cyclic voltammetric and potential step experiments in two time regimes, which are characterized by linear and spherical diffusional patterns, respectively. Values of D app and C o thereby obtained are 2.0 × 10−6 cm2 s−1 and 1.4 × 10−2 mol dm−3. The D app value is larger than expected for a typical solid redox-conducting material. Analogous measurements done in iron(III) hexacyanoferrate(III) solutions of comparable concentrations, 1.0 × 10−2 and 5.0 × 10−3 mol dm−3, yield D app on the level of 5–6 × 10−6 cm2 s−1. Thus, the dynamics of charge propagation in this sol-gel material is almost as high as in the liquid phase. The residual water in the silica, along with the pore structure, are important to the overall mechanism of charge transport, which apparently is limited by physical diffusion rather than electron self-exchange. Under conditions of a solid state voltammetric experiment which utilizes an ultramicroelectrode, encapsulated iron hexacyanoferrate redox centers seem to be in the dispersed colloidal state rather than in a form of the rigid polymeric film. Received: 8 April 1999 / Accepted: 13 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号