首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the methods of electronic absorption and emission spectroscopy, we have studied the optical properties of cyclometalated [Pd(C??N)En]CH3COO and [Rh(C??N)2En]Cl complexes of 2-(4-biphenylyl)-6-phenylbenzoxazole luminophore with ethylenediamine. We have shown that, along with a bathochromic shift of intraligand spin-allowed ??-??* optical transitions by 1000?C1800 cm?1, complexes are characterized by the occurrence of long-wavelength bands of a mixed nature (intraligand-metal-ligand charge transfer) in the range of 369??392 nm and by competing intraligand fluorescence (419?C423 nm) and phosphorescence (511?C532 nm) processes under low-temperature (77 K) photoexcitation.  相似文献   

2.
Cyclometalated [M(C∧N)En]PF6 (M = Pd(II), Pt(II)) and [M(C∧N)2En]PF6 (M = Rh(III), Ir(III)) complexes ((C∧N)? corresponds to the deprotonated forms of 2-tolylpyridine and benzo[h]quinoline, and En is ethylenediamine) are studied by 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and voltammetry. Metalation of heterocyclic ligands leads to the formation of five-membered {M(C∧N)} cycles in the composition of square planar and octahedral complexes of the cis-C,C structure. Correlation of the energy positions of the long-wavelength metal-to-ligand charge-transfer absorption bands with the difference between the potentials of one-electron waves of metal-centered oxidation and ligand-centered reduction of complexes is shown. The phosphorescence of the complexes in the visible region of 469–524 nm is attributed to the radiative transition from the metal-modified intraligand excited state. The temperature quenching of the phosphorescence of complexes is attributed to the thermally activated population of metal-centered electronically excited states with subsequent nonradiative deactivation.  相似文献   

3.
The cyclometalated [M(pbo)En]PF6(M = Pd(II), Pt(II)), [M(pbo)2En]PF6 (M = Rh(III), Ir(III)), and [Rh(C∧N)2En]PF6 ((C∧N)? are the deprotonated forms of 2-phenylbenzoxazole (pbo), 2,5-diphenyloxazole (dpo), 2-phenylbenzothiazole (pbt), 2-biphenyl-4-yl-5-phenyloxazole (bpo), and 2-biphenyl-4-yl-6-phenylbenzoxazole (bpbo) and En is ethylenediamine) complexes are studied by 1H NMR spectroscopy, IR spectroscopy, and electronic absorption and emission spectroscopy. Metalation of luminophores leads to the formation of five-membered {M(C∧N)} cycles in the composition of plane-square and octahedral complexes of the cis-C,C structure. In addition to the intraligand (IL) π-π* optical transitions in the UV region, the complexes are characterized by long-wavelength metal-to-ligand charge-transfer (MLCT) absorption bands in the region of 366–416 nm. The phosphorescence of the complexes in the visible region (482–531 nm) is attributed to radiative transition from the mixed IL/MLCT electronically excited state. The temperature quenching of the phosphorescence of complexes is attributed to the thermally activated population of metal-centered electronically excited states with subsequent nonradiative deactivation.  相似文献   

4.
Cyclometalated [M(C^N)(μ-(N-S))]2 complexes ((M = Pd(II), Pt(II)), (C^N)? are the deprotonated forms of 2-tolylpyridine and benzo[h]quinoline, and (N-S)? are pyridine-2-thiolate and benzothiazole-2-thiolate ions) are studied by 1H NMR, IR, electronic-absorption, and emission spectroscopy, as well as by voltammetry. It is shown that the formation of the metal-metal chemical bond and the σ dz2 * orbital as a HOMO of complexes leads to the long-wavelength spin-allowed (410–512 nm) and spin-forbidden (595–673 nm) optical transitions σ dz2 * (C^N) * in the absorption and phosphorescence spectra, as well as to the two-electron and successive one-electron oxidation with the formation of binuclear Pt(III) and Pd(III) complexes. The substitution of Pt(II) by Pd(II) is characterized by hypso- and bathochromic shifts of the spin-allowed and forbidden σ dz2 * (C^N) * optical transitions in the absorption and phosphorescence spectra of complexes, by phosphorescence quenching of Pd(II) complexes in liquid solutions, and by an anodic shift of the oxidation potential of Pd(II) complexes compared with Pt(II) complexes.  相似文献   

5.
The cyclometalated complexes [Pt(С^N)En]PF6 and [Ir(C^N)2En]PF6 ((C^N) are deprotonated forms of 2-phenylbenzothiazole or 2-naphthylbenzothiazole and En is ethylenediamine) are studied by 1Н NMR, IR, electronic absorption, and emission spectroscopy, as well as by voltammetry. Metalation of heterocyclic ligands leads to the formation of five-membered {M(C^N)} cycles in the composition of squareplanar Pt(II) complexes and octahedral Ir(III) complexes of the cis-С,С structure. A bathochromic shift of the metal-to-cyclometalated ligand charge transfer bands and a decrease in the potential difference between the single-electron waves of metal-centered oxidation and ligand-centered reduction of complexes upon substitution of 2-phenylbenzothiazole by 2-naphthylbenzothiazole and of Pt(II) by Ir(II) are shown. The phosphorescence of complexes in the visible region is assigned to the radiative transition from the metal-modified intraligand electronic excited state.  相似文献   

6.
The [Pd(C∧N)(4,4′-bpy)Cl], [Pd(C∧N)NO3]2(μ-4,4′-bpy) and [Pd(C∧N)(μ-4,4′-bpy)]4(NO3)4 complexes (C∧N are deprotonated forms of 2-phenylpyridine (ppy), 2-(2′’-thienyl)pyridine (tpy), and 2-phenylbenzothiazole (bt); bpy is 4,4′ bipyridyl) are synthesized and characterized by 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and cyclic voltammetry. The upfield shifts of the chemical shift of a proton in the ortho-position to the donor carbon atom of the cyclopalladated ligand of complexes (Δδ = −(1.1–1.5) ppm) is assigned to the anisotropic effect of the circular current of the pyridine rings of 4,4′-bipyridyl orthogonal to the coordination plane. The characteristic long-wavelength absorption and phosphorescence bands of the complexes are assigned to the chromophore metal-complex fragment {M(C∧N)}. The quasi-reversible reduction waves of complexes are assigned to the ligand-centered processes of successive electron transfer to the π*-orbitals localized mainly on the coordinated pyridine components of 4,4′-bipyridyl.  相似文献   

7.
The [Ir(bt)2(S^S)], [Ir(bt)2(S^N)], and [Ir(bt)2(CH3CN)2]PF6 complexes, where (bt)? is a deprotonated form of 2-phenylbenzothiazole and (S^S)? and (S^N)? are diethyldithiocarbamate, O-ethyldithiocarbonate, 2-mercaptobenzothiazolate, 2-mercaptobenzoxazolate, and 2-mercaptopyridinate ions, and the effect of Hg(II), Cu(II), Cd(II), and Zn(II) cations on the optical characteristics of these complexes are studied by electron absorption spectroscopy and emission spectroscopy. A hypsochromic shift of the absorption and phosphorescence bands of complexes in substituting the (S^S)? and (S^N)? chelating ligands with acetonitrile ligands is attributed to a lower energy of dIr orbitals compared with the mixed dIr/p(S) orbitals. It is shown that the presence of Hg(II) cations results in a hypsochromic shift of the absorption and phosphorescence bands of complexes [Ir(bt)2(S^S)] and [Ir(bt)2(S^N)] because of an effective reaction of substitution of chelating ligands to acetonitrile ligands.  相似文献   

8.
The [M(N_N)(Hdphpm)]ClO4 and [(M(N_N))2(μ-dphpm)](ClO4)2 complexes (M = Pd(II), Pt(II); (N_N) is ethylenediamine (En) and orthophenanthroline (Phen); Hdphpm? and dphpm2? are the mono- and bisdeprotonated forms of 4,6-diphenylpyrimidine) are obtained and characterized by 1H NMR spectroscopy and electronic absorption and emission spectroscopy. The magnetic nonequivalence of protons of (N_N) ligands is explained by a difference in the trans-effect of the carbanion and pyrimidine parts of the cyclometalated ligand. The long-wavelength absorption bands and the vibrationally structured luminescence bands of ethylenediamine complexes are attributed to optical transitions in the {M(Hdphpm)} and {M2(μ-dphpm)} metal-complex fragments. The complexes with orthophenanthroline exhibit two low-energy optical transitions involving π* orbitals localized on the cyclometalated and chelating ligands; the difference in their energies depends on the metal and is much larger for Pt(II) than for Pd(II). It is found that the replacement of Pd(II) by Pt(II) in the [(M(phen))2(μ-dphpm)]2+ complexes changes the direction of the photoexcitation energy degradation due to the energy transfer between the {M2(μ-dphpm)} bridging fragment and peripheral phenanthroline ligands.  相似文献   

9.
Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2′-bipyridine; and (N^O) is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.  相似文献   

10.
A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, 1H NMR, 13C NMR, UV–Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands.  相似文献   

11.
The effect of heterocyclic metalated and bridging ligands on the optical and electrochemical properties of [Pt(C^N)(μ-N^S)]2 complexes ((C^N)? and (N^S)? are the deprotonated forms of 1-phenylpyrazole, 2-tolylpyridine, benzo[h]quinoline, 2-phenylbenzothiazole and 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptopyridine) is studied by 1H NMR, electronic absorption, and emission spectroscopy, as well as by voltammetry. The long-wavelength spin-allowed (415–540 nm) absorption bands of the complexes are attributed to the metal-metal-to-ligand charge transfer (MMLCT) optical transitions. It is shown that the interaction of the d Z2 and π (C^N *) orbitals of two {Pt(C^N)} fragments of binuclear complexes leads to a cathodic shift (0.5–1.0 V) of their metal-centered oxidation potential and to an anodic shift (0.1–0.2 V) of their ligand-centered reduction potential with respect to [Pt(C^N)En]+ complexes. The luminescence of binuclear complexes in solutions at room temperature is assigned to the spin-forbidden MMLCT transition. It is shown that, in frozen (77 K) solutions, in addition to the MMLCT optical transitions, spin-forbidden radiative processes occur from the intraligand (π(C^N) (C^N) * ) and metal-to-ligand charge transfer (dPt (C^N) * ) excited states.  相似文献   

12.
The synthesis of ammonia cyclometalated palladium(II) complexes [Pd(NH3)2C^N]ClO4 (C^N is the deprotonated form of 2-phenylpyridine, 2-(para-tolyl)pyridine, 7,8-benzo(h)quinoline, 2,6-diphenylpyridine, and 4-phenylpyrimidine) is developed. The IR and electronic absorption and emission spectra of these complexes are studied. It is found that the ammine and analogous ethylenediamine cyclometalated Pd(II) complexes have similar spectral and luminescent properties and the same nature of the electronically excited 3(π-π*)-type state responsible for the long-lived luminescence, the π and π* orbitals being localized on the corresponding cyclometalating ligand. The efficient temperature quenching of the luminescence of Pd(II) complexes at room temperature is assigned to the thermally activated population of metal-centered electronically excited states with subsequent nonradiative deactivation.  相似文献   

13.
The mixed-ligand cyclometalated [M(Bt)(μ-Cl)]2 and [(M(N∧N))(Bt)]+ complexes (M = Pd(II), Pt(II); Bt? is the deprotonated form of 2-phenylbenzothiazole; and ( N∧N) is ethylenediamine (En) and orthophenanthroline (Phen)) are studied and described by 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and voltammetry. The one-electron reduction of complexes is attributed to the electron transfer to the π * orbitals of both diimine and cyclometalated ligands. The long-wavelength absorption bands and vibrationally structured luminescence bands are assigned to optical transitions that are localized mainly on the M(Bt) metal-complex fragment.  相似文献   

14.
Abstract

The IR spectra of the linkage isomers [Pd(bipy)(SCN)2] and [Pd(bipy)(NCS)2] have been determined in the C≡N stretching region (2200–2000 cm?1) and below 500 cm?1. The band shifts resulting from deuteration of the 2,2′-bipyridine (bipy) ring and 15NCS-labelling are shown to provide a ready means for distinguishing between the internal ligand modes, the μPd-N(bipy) and μPd-SCN/μPd-NCS vibrations. The assignment technique has been further extended to the complexes [Pt(bipy)(SCN)2] and [Pd(phen)(SCN)2] (phen = 1,10-phenanthroline). Finally, a comparison between the IR spectra of [Pd(bipy)(NCO)2], [Pd(bipy)(NCS)2] and [Pd(bipy)(SCN)2] reveals that the frequencies μM-NCO, μM-NCS and μM-SCN decrease in the sequence NCO > NCS > SCN.  相似文献   

15.
A series of [Rh(ppz)2(N^N)]+ complexes (ppz? is the deprotonated form of 1-phenylpyrazole and (N^N) is ethylenediamine, 2,2′-bipyridyl, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and 2,2′-biquinoline) is obtained and characterized by 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and cyclic voltamperometry. A 0.75-V anodic shift of the ligand-centered reduction potentials of complexes compared to free heterocyclic (N^N) ligands is observed. The vibrationally structured luminescence spectra of complexes are attributed to intraligand spin-forbidden optical transitions localized on the {Rh(N^N)} metal-complex fragments.  相似文献   

16.
1-(4-Aminoantipyrine)-3-tosylurea (H2L) and its three lanthanide (III) complexes, M(H2L)3 3NO3 [where M = Nd(III), Sm(III) and Eu(III)], have been synthesized and characterized. In addition, the DNA-binding properties of the three complexes have been investigated by UV–vis (ultraviolet and visible) absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, cyclic voltammetry, and viscosity measurements. Results suggest that the three complexes bind to DNA via a groove binding mode. Furthermore, the antioxidant activity (superoxide and hydroxyl radical) of the metal complexes was determined by using spectrophotometer methods in vitro. These complexes were found to possess potent antioxidant activity and be better than standard antioxidants like vitamin C and mannitol. Absorption spectra of the complex 3 inTris-HCl buffer upon addition of calf-thymus DNA. [complex]=1×10-5 M, [DNA]=(0-1) ×10-5 M. Arrow shows the absorbance changing upon increasing DNA concentrations. Inset: plots of [DNA]/(εa – εf) versus [DNA] for the titration of DNA with the complex.  相似文献   

17.
New ligand 4‐((2‐Hydroxy1‐naphthyl) methylene amino)‐1.5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one (HL) was synthesized from the reaction of 2‐hydroxy‐1‐naphthaldehyde and 4‐aminophenaz one. A complexes of this ligand [VO(II)(HL)(SO4)], [Pt(IV)(L)Cl3], [Re(V)(L)Cl3]Cl, and [M(II)(L)Cl] (M═Pd(II), Ni(II), Cu(II)) were synthesized. The resulted compounds were characterized by IR, NMR (1H and 13C), mass spectrometry, element analysis, and UV‐Vis spectroscopy. Additionally, the spectroscopic studies revealed octahedral geometries for the Re(V), Pt(IV) complexes, and square pyramidal for VO(II), square planar for Pd(II) complex, and tetrahedral for the Ni(II) and Cu(II) complexes. Thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG*, and K) were calculated using from the TGA curve Coats‐Red fern method. Therefore, hyper Chem‐8 program has been used to predict structural geometries of compounds in the gas phase. Finally, the synthesized Schiff base and its metal complexes were screened for their biological activity against bacterial species, 2 Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus) and 2 Gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa).  相似文献   

18.
Properties of the triplet states of octaethylporphyrins with the steric hindrance (free bases and Pd complexes) are studied by the methods of stationary and kinetic spectroscopy in the temperature range from 77 to 293 K. The mono-mesophenyl substitution results in a decrease in the quantum yield and shortening of the phosphorescence lifetime of Pd complexes by 250–3500 times in degassed toluene at 293 K. The phosphorescence quenching is caused by nonplanar dynamic conformations of the porphyrin macrocycle in the T 1 state, which also lead to the appearance of new bands at λ~1000 nm in the T-T absorption spectra. As the number of meso-phenyls (Pd-octaetyltetraphenylporphyrin) increases, the quantum yield of phosphorescence further decreases (<10?5) at 293 K, the lifetime of the T 1 state shortens (<50 ns), and the efficiency of the singlet oxygen generation abruptly decreases (<0.01). The intense bathochromic emission of this compound at 705 nm with a lifetime of 1 ms at 77 K is assigned to the phosphorescence of a nonplanar conformation. Upon meso-orthonitrophenyl substitution, the quenching of phosphorescence of Pd complexes (by more than 104 times at 293 K) is caused by direct nonadiabatic photoinduced electron transfer from the T 1 state to the nearest charge-transfer state with the probability k et T =(1.5–4.0)×106 s?1. The induced absorption of ortho-nitro derivatives in the region between 110 and 1400 nm is caused by mixing of pure ππ* states with charge-transfer states.  相似文献   

19.
Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C2v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1?×?10-4?M)] with tetra dansylated calix[4]resorcinarene (1?×?10-6?M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static.  相似文献   

20.
The novel ligand (dmbip) 2-(4-N, N-dimethylbenzenamine)1H-imidazo[4, 5-f][1, 10]phenanthroline and its complexes [Ru(phen)2dmbip]2+ (1), [Ru(bpy)2dmbip]2+ (2), [Co(phen)2dmbip]3+ (3) and [Co(bpy)2dmbip]3+ (4) [where phen?=?1, 10-phenanthroline, bpy?=?2, 2-bipyridine], have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, 13C NMR and Mass spectra. The DNA binding properties of the complexes were investigated by absorption, emission, quenching studies, light switch “on and off”, salt dependent, sensor (cation and anion) studies, viscosity measurements, cyclic voltammetry, molecular modeling and docking studies. The four complexes were screened for Photo cleavage of pBR322 DNA, antimicrobial activity and cytotoxicity. The experimental results indicate that the four complexes can intercalate into DNA base pairs. The DNA-binding affinities of these complexes follow the order [Ru(phen)2dmbip]2+ > [Co(phen)2dmbip]3+ > [Ru(bpy)2dmbip]2+ > [Co(bpy)2dmbip]3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号