首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid–liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72–100% for table grapes and 66–105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64–75% and 58–66%, respectively). Limits of detection (LODs) were in the range 0.651–5.44 μg/kg for table grapes and 0.902–6.33 μg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).  相似文献   

2.
A fast, simple, and sensitive HPLC–FD method is described for determination of ochratoxin A (OTA) in pig kidney and muscle; a small mass (<2.5 g) of sample and a relatively small volume (<15 mL) of a non-halogenated extraction solvent are required. Ochratoxin B, systematically absent from all the samples investigated, was used as internal standard. Liquid–liquid partition was used for sample clean-up. Recoveries at the 1 ng g–1 level were 86±15% and 74±8% for kidney and muscle, respectively, and detection limits were 0.14 and 0.15 ng g–1. Clean-up by solid-phase extraction (SPE) is required for pig liver. A survey of the OTA content of tissues of pigs slaughtered in southern Italy revealed that 52 out of 54 analysed samples were contaminated; the OTA concentration in kidney ranged between 0.26 and 3.05 ng g–1. The effect of measurement precision on compliance with legal limits is also discussed.  相似文献   

3.
A selective, sensitive, and accurate high-performance liquid chromatographic method for determination of diltiazem in plasma samples has been developed and validated. The effects of mobile phase composition, buffer concentration, mobile phase pH, and concentration of organic modifiers on retention of diltiazem and internal standard were investigated. Solid-phase and liquid–liquid extraction were examined and proposed for isolation of the drug and elimination of endogenous plasma interferences. A 5 m Lichrocart Lichrospher 60 RP-select B chromatographic column was used; the mobile phase was acetonitrile–0.025 mol L–1 KH2PO4 (pH 5.5), 35:65 ( v / v) at a flow-rate of 1.5 mL min–1. The detection wavelength was 215 nm. The calibration plots were linear in the concentration range 20.0–500.0 ng mL–1. The method has been implemented to monitor diltiazem levels in patient samples.  相似文献   

4.
The phenolic compounds phenol, 4-nitrophenol, 2,4-dinitrophenol, 2,6-dinitrophenol, 1-naphthol, 2-naphthol, and 4-chlorophenol are extracted nearly quantitatively from aqueous solution into the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6) in molecular form at pH<pKa. Picric acid is extracted efficiently in anionic form. Recovery of pyrocatechol and resorcinol is much lower. The effect of pH, phenol concentration, and volume ratio of aqueous and organic phases were studied. Ionic liquid BMImPF6 is shown to be suitable for extraction–voltammetric determination of phenols without back-extraction or addition of support electrolyte. The electrochemical window of BMImPF6 at various electrodes was determined, and voltammetric oxidation of phenols and reduction of nitrophenols in BMImPF6 was studied.  相似文献   

5.
The ever-increasing complexity of industrial product recycling calls for more efficient purification processes such as liquid–liquid (L/L) extraction. Because of the high complexity of L/L extraction, optimizing a large-scale extraction is both time and resource consuming and can only be justified to solve high volume and value purification problems. It is therefore difficult to apply to small scale and highly variable waste material influx. We believe using a fully automated and integrated microfluidic approach will enable fast and cost-effective studies of L/L extraction processes. This review presents an overview of L/L metal extraction performed using microfluidics platforms. We first give an overview of the extraction methods. We then review the most relevant characterization methods integrated with such platforms.  相似文献   

6.
A microfluidic device with integrated electrodes for the electrochemically-modulated extraction of ions across immiscible aqueous–organic liquid–liquid interfaces is presented. Using a Y-shaped microfluidic channel with in situ electrodes and co-flowing aqueous and organic immiscible electrolyte solutions, the manipulation of the applied interfacial potential enabled the extraction of ions from the aqueous phase into the organic phase. Data for the extraction of tetraethylammonium cations from aqueous electrolyte into 1,2-dichloroethane electrolyte are presented. The device demonstrates the benefits of combination of microfluidics and liquid–liquid electrochemistry.  相似文献   

7.
The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid–liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA)2(A)] and [Ln(CMPO)(AHA)2(A)], where Ln?=?Nd or Eu and A represents the DEHP? anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A)3] complexes when CMPO is added to n-dodecane solutions of the LnA3 compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).  相似文献   

8.
Nonionic surfactants e.g. alcohol ethoxylates (AEOs) and alkylamine ethoxylates (ANEOs) are commonly utilised as adjuvants in pesticide formulations to enhance their effectiveness. In this study, analytical methods for AEO and ANEO determination in soil samples using pressurised liquid extraction (PLE) were developed and used in connection with LC–MS. The recovery of the method, which was highly dependent on the soil properties, varied in the range 47–106% for AEO and 27–109% for ANEO. Detection limits (LOD) were 7–13 µg kg–1 for AEO and 24–43 µg kg–1 for ANEO. The developed method has been applied to determine AEOs and ANEOs in surface soil samples from fields sprayed with glyphosate herbicides. Tallowalkylamine ethoxylates (an ANEO) were detected in the soil before and after pesticide application, with increasing concentrations after treatment. The highest concentration in the soil samples was observed for the ANEO homologues with the longest ethoxy chains; in the clay soil the concentration decreased with the length of the ethoxy chain. ANEOs added to pesticide formulations as a technical mixture will, as demonstrated in this study, behave as individual homologues, which is reflected in their behaviour in the environment.Abbreviations AEO Alcohol ethoxylates - ANEO Alkylamine ethoxylates - APEO Alkylphenol ethoxylates - APCI Atmospheric pressure chemical ionisation - ASE Accelerated solvent extraction - CEC Cationic exchange capacity - LC–MS Liquid chromatography–mass spectrometry - LOD Limit of detection - MAE Microwave-assisted extraction - PLE Pressurised liquid extraction - SD Standard deviation - SIM Selected-ion monitoring - SPE Solid-phase extraction - TEA Triethylamine  相似文献   

9.
Chemical residues, such as insecticides and anthelmintics, are frequently redistributed from the aquatic environment to marine species. This work reports on a fast validated protocol for the analysis of azamethiphos, three avermectins, two carbamates and two benzoylurea pesticides and chemotherapeutic agents in seaweeds based on pressurized liquid extraction and separation of analytes by liquid chromatography coupled with tandem mass spectrometry. The variables affecting the efficiency of pressurized liquid extraction, including temperature, number of extraction cycles, static extraction time and percent acetonitrile flush volume, were studied using a Doehlert design. The optimum parameters were 100 °C and one cycle of 3 min with 70 % acetonitrile. Adequate in-cell clean-up of the seaweeds was achieved using 0.8 g of Florisil over 0.1 g of graphitized carbon black on the bottom of the cell. The optimized method was validated using an analyte-free seaweed sample fortified at different concentrations. The limits of quantification ranged from 3.6 μg kg(-1) (azamethiphos) to 31.5 μg kg(-1) (abamectin). The recovery was from 87 to 120 % in most cases at different spiking levels. Finally, the reproducibility of the method expressed as the relative standard deviation and evaluated at concentrations of 10 and 50 μg kg(-1) was in the range 9-14.3 % and 6.1-12.3 %, respectively. The applicability of the method was evaluated with five commercial and 12 wild edible seaweeds, and four target compounds were detected in two wild seaweeds at a concentration below the quantification limit.  相似文献   

10.
A sample pretreatment method based on microporous membrane liquid-liquid extraction (MMLLE) was developed for the subsequent gas chromatographic determination of pesticides in wine. MMLLE provided efficient and selective extraction with enrichment factors in the range 3-13. The gas chromatographic separation was carried out using on-column injection and flame ionization detection. The method was linear, repeatable and sensitive. The limits of quantification were better than 0.006 mg/L for all the analytes except for iprodione (0.37 mg/L). The method was applied to the determination of pesticides in several red wines of different origin.  相似文献   

11.
In this study, a sensitive and developed method based on the use of molecularly imprinted-solid phase extraction along with dispersive liquid–liquid microextraction has been reported for selective extraction and pre-concentration of triazine pesticides from aqueous samples. Molecularly imprinted microspheres (template, atrazine) were synthesized using precipitation polymerization and used as sorbent in SPE procedure. A model solution containing the studied pesticides was slowly passed through the atrazine-MIP cartridge. The adsorbed analytes were eluted with methanol, mixed with carbon tetrachloride (as extraction solvent) and rapidly injected into deionized water. In this process, the analytes were extracted into fine droplets of carbon tetrachloride and the fine droplets were sedimented in bottom of the conical test tube by centrifugation. Finally, GC-FID was used for the separation and determination of analytes in the sedimented phase. Some important parameters affecting the performance of developed method were completely investigated. The linear ranges of calibration curves were wide and limits of detection and limits of quantification were between 0.2–7 and 0.5–20 ng mL?1, respectively. The relative standard deviation obtained for six repeated experiments of atrazine (10 ng mL?1) was 3.1 %. The relative recoveries obtained for the atrazine in the spiked samples were within in the range of 92–98 %.  相似文献   

12.
A procedure for the determination of seven parabens (esters of 4-hydroxybenzoic acid), including the distinction between branched and linear isomers of propyl- and butyl-parabens and triclosan in water samples, was developed and evaluated. The procedure includes in-sample acetylation-non-porous membrane-assisted liquid–liquid extraction and large volume injection–gas chromatography–ion trap–tandem mass spectrometry. Different derivatisation strategies were considered, i.e. post-extraction silylation with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and in situ acylation with acetic anhydride (Ac2O) and isobutylchloroformate. Moreover, acceptor solvent and the basic catalyser of the acylation reaction were investigated. Thus, in situ derivatisation with Ac2O and potassium hydrogenphosphate (as basic catalyser) was selected. Potassium hydrogenphosphate overcomes some drawbacks of other basic catalysers, e.g. toxicity and bubble formation, while leads to higher responses. Subsequently, other experimental variables affecting derivatisation–extraction yield such as pre-stirring time, salt addition and volume of Ac2O were optimised by an experimental design approach. Under optimised conditions, the proposed method achieved detection limits from 0.1 to 1.4 ng L−1 for a sample volume of 18 mL and extraction efficiencies, estimated by comparison with liquid–liquid extraction, between 46% (for methyl- and ethyl-parabens) and 110% (for benzylparaben). The reported sample preparation approach is free of matrix effects for parabens but affected for triclosan with a reduction of ≈ 40% when wastewater samples are analysed; therefore, both internal and external calibration can be used as quantification techniques for parabens, but internal standard calibration is mandatory for triclosan. The application of the method to real samples revealed the presence of these compounds in raw wastewater at concentrations up to 26 ng mL−1, the prevalence of the linear isomer of propylparaben (n-PrP), and the coexistence of the two isomers of butylparaben (i-BuP and n-BuP) at similar levels.  相似文献   

13.
This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1 g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69–97% (except for thiophanate-methyl and carbofuran, which were 53–63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320–4.66 μg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.  相似文献   

14.
The distribution of pyrethroid and phenylpyrazole pesticides in the water environment has raised public concerns because of their potential risks to ecosystem and human health. However, co-extraction of emulsifier type compounds (by liquid–liquid extraction, LLE) present in environmental samples can present a challenge for quantifying typically low concentrations of pesticides. Several methods were evaluated for breaking emulsions in problematic environmental surface water samples extracted by LLE using methylene chloride. Target pesticides included 11 typical pyrethroid and phenylpyrazole pesticides commonly used in agricultural and landscape insect pest control. The most effective method was selected for validation in fortification studies with GC-ECD analysis. The average recoveries of spiked pyrethroid and phenylpyrazole pesticides were 88.2–123.4% for water samples with moderate emulsions and 93.0–117.4% for water samples with severe emulsions. Recoveries of the pesticides ranged 81.0–126.4% (water samples with moderate emulsions) and 95.9–110.6% (water samples with severe emulsions) for lowest fortification level (5–20 ng L−1), 88.2–123.4% (water samples with moderate emulsions) and 93.0–117.4% (water samples with severe emulsions) for middle fortification level (10–40 ng L−1), and 90.2–119.9% (water samples with moderate emulsions) and 91.2–105.9% (water samples with severe emulsions) for highest fortification level (50–200 ng L−1). Relative standard deviations of pesticide recoveries were usually <10%. Results indicate that this method is a robust and reproducible option for LLE of pyrethroid and phenylpyrazole pesticides from emulsion-prone surface water samples.  相似文献   

15.
The extractive properties of the ortho-aminophenol reagent upon U(VI) were investigated in two solvents: 4-chlor-acetophenone and acetylacetone, in a water-organic solvent system. The method here proposed is based on the complexation reaction of the uranyl ion, UO2 2+, with ortho-aminophenol dissolved in 4-chlor-acetophenone, at room temperature, over a pH interval = 4–6, followed by spectro-photometry of the organic phase, involving measuring of absorbancy at 569.6 nm. The Beer law is valid over the 1–12 μg U(VI)/mL concentration interval, with molar absorbtivity εmax = 4.3 × 105 mol−1 cm2 and Sandell sensitivity = 0.0526 μg cm−2. The structure, stability and solubility of the formed complex was studied by UV–VIS and IR spectrometry, diffractometry and scanning electron microscopy. The mixed complex formed between the uranyl ion and the ortho-aminophenol dissolved in 4-chlor-acetophenone, [UO2.(L)2.(S)4], is characterized by the following parameters: metal/ligand combination ratio: M/L = 1/2, stability constant β = 2.06 × 106, distribution coefficient D = 66.56 (Vorg = Vaq), percentage extraction E% = 98.52, and recovery factor, R%, ranging between 99.48 and 99.85%.  相似文献   

16.
The (liquid + liquid) equilibrium data (LLE) for the extraction of toluene from heptane with different ionic liquids (ILs) based on the alkylsulfate anion (R-SO4) was determined at T = 313.2 K and atmospheric pressure. The effect of more complex R-SO4 anions on capacity of extraction and selectivity in the liquid–liquid extraction of toluene from heptane was studied. The ternary systems were formed by {heptane + toluene + 1,3-dimethylimidazolium methylsulfate ([mmim][CH3SO4]), 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][CH3SO4]), or 1-ethyl-3-methylimidazolium ethylsulfate ([emim][C2H5SO4])}. The degree of quality of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. The phase diagrams for the ternary systems were plotted, and the tie lines correlated with the NRTL model compare satisfactorily with the experimental data.  相似文献   

17.
A novel arrangement for microporous membrane liquid–liquid extraction from the aqueous donor phase to the organic acceptor phase within a micro-vial, which is compatible with the chromatograph autosampler is presented. The device consisted of a stoppered glass micro-vial containing the organic solvent where the septum of the screw stopper was replaced by a sized piece of membrane which is hermetically assembled to the volumetric flask containing the aqueous donor solution. The placement of the membrane in alternative contact with the solutions was achieved by orbital agitation. As a preliminary study, 2-ethylhexyl 4-(dimethylamino)benzoate has been determined (limit of quantification 0.11 μg L−1, precision 7.4%). The small quantity of organic solvent used, the achieved sample cleanup, and the minimal handling and risk of cross-contamination are significant operational advantages.  相似文献   

18.
A simple and sensitive method for the extraction of four phthalate esters including dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP) and di-n-butyl phthalate (DBP) as well as their determination in water samples was developed using homogeneous liquid–liquid extraction (HLLE) and HPLC-UV. The extraction method is based on the phase separation phenomenon by the salt addition to the ternary solvent system. The extraction parameters such as type and volume of extracting and consolute solvent, concentration of salt, pH of sample and extraction time were optimized. Under the optimal conditions (extraction solvent: 100?µL CHCl3; consolute solvent: 2.0?mL methanol; NaCl 15% (w/v) and pH of sample: 6.5) extraction recovery was in the range of 92–102%. Linearity was observed in the range of 0.5–300?µg?L?1 for DEP and 0.6–300?µg?L?1 for DMP, BBP and DBP. Correlation coefficients (r 2), limits of detection (LODs) and relative standard deviations (RSDs) were in the ranges of 0.9976–0.9993, 0.18–0.25 and 1.5–4.8%, respectively. The method was successfully applied for the preconcentration and determination of these phthalate esters in the several environmental water samples.  相似文献   

19.
In this work a molecularly imprinted polymer was developed as a selective sorbent for extraction of loratadine (as a model) in complex matrices followed by miniaturized homogeneous liquid–liquid extraction (MHLLE) for the first time. The molecularly imprinted polymer (MIP) which is based on loratadine as the template was synthesized successfully by precipitation polymerization and was used as a selective sorbent. This technique was applied for preconcentration, sample preparation, and determination of loratadine using high performance liquid chromatography-photo diode array detection (HPLC-PDA). Optimization of various parameters affecting molecular imprinted solid phase extraction (MISPE), such as pH of adsorption, composition and volume of eluent, adsorption and desorption times were investigated. Besides, in the subsequent stage (MHLLE) the type and volume of extraction solvent, sodium hydroxide amount, surfactant concentration, and extraction time were investigated and optimized. Under the optimal condition, maximum enrichment capacity and Langmuir constant were 91 mg g−1 and 0.014 L mg−1, respectively. Furthermore, enrichment factor and extraction recovery of MIP-MHLLE method were 30 and 90%, respectively. The LOD of the proposed method was 0.2 μg L−1 and a linear dynamic range of 1–1000 μg L−1 was obtained with correlation coefficient of greater than 0.998. The present method was applied for extraction and determination of loratadine in plasma and urine samples in μg L−1 levels and satisfactory results were achieved (RSD <8% based on three replicate measurements).  相似文献   

20.
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid–liquid extraction (MALLE) and LC–atmospheric pressure photoionisation (APPI)–MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 μL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L−1 (OD-PABA) and 16 ng L−1 (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L−1 (BP-3) and 4381 ng L−1 (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L−1 (OC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号