首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of fluorinated diblock copolymers poly(2,2,3,4,4,4-hexafluorobutyl methacrylate)-b-poly(glycidyl methacrylate) PHFMA-b-PGMA with different fluorine content were synthesized by activator generated by electron transfer atom transfer radical polymerization (AGET ATRP). FTIR, 1H NMR and GPC data verified feasibility and controllability of the synthesis. In order to evaluate the effect of chain structure on the surface properties, corresponding homopolymer poly(2,2,3,4,4,4-hexafluorobutyl methacrylate) and random copolymer copoly(2,2,3,4,4,4-hexafluorobutyl methacrylate-r-glycidyl methacrylate) were also comparatively studied. Contact angle measurements indicated that the water and ethyleneglycol contact angles of block- and random copolymers increased with increase of fluorine content, but in different manner. This difference comes from different surface energy at the same fluorine content on film surface. The surface stability of block-copolymer was obviously better than that of random copolymer; the same results were observed in heat resistance tests.  相似文献   

2.

A series of fluorine‐containing diblock copolymers based on lauryl methacrylate and 1H,1H,2H,2H‐perfluoroalkyl acrylate have been prepared by atom transfer radical polymerization (ATRP). The preparation process of PLMA‐Br macroinitiators was controlled within a reasonable time corresponding to the ln [M0]/[Mt]~time plot of the reaction. FTIR, 1H‐NMR, GPC and fluorine‐element analysis (FEA) were used to characterize the synthesized block copolymers. The solid surface activity of these polymers was demonstrated by contact angle measurement. The polymer films prepared by block copolymers with more than three fluorinated units showed low dispersion force contributions to the surface energy indicating the presence of the fluorinated block at the surface. The surface activity in solutions was measured by drop‐weight method. Ii is interesting to find, when the fluorine weight percentage is controlled constant, that PLMA‐b‐PFAEA with larger molecular size is more prominent in exploiting the fluorinated structure to reduce the surface tension of solutions. The block copolymer's ability in reducing surface tension of solutions also depends on the type of solvent.  相似文献   

3.
Functionalizing biosourced materials is a major topic in the field of materials science. In particular, grafting polymerization techniques have been employed to change the surface properties of various substrates. Here, we report on the grafting of amphiphilic block copolymers in lignocellulosic materials using surface‐initiated activators generated by electron transfer atomic transfer radical polymerization (SI‐AGET‐ATRP). With this modification, it is possible to combine the interesting properties (anisotropy and high mechanical stability) of lightweight lignocellulosic materials, such as wood, with the special properties of the grafted block copolymers. Hydroxyl groups on wood cell wall biopolymers were used for the chemical bonding of an alkyl bromide as the initiator for AGET‐SI‐ATRP of a highly hydrophilic monomer ([2‐(methacryloyloxy)ethyl]trimethylammonium chloride) and a highly hydrophobic fluorinated monomer (2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate). The successful grafting of homopolymers and block copolymers onto the wood structure was confirmed through Fourier transform infrared and Raman spectroscopy. The functionalization with the two homopolymers yielded lignocellulosic materials with opposite wettabilities, whereas by the adjustment of the ratio between the two copolymer blocks, it was possible to tune the wettability between these two extremes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 885–897  相似文献   

4.
The synthesis of a fluorinated macroinitiator for copper-catalyzed atom transfer radical polymerization (ATRP) is reported, as well as its use for the controlled living polymerization of poly(propylene glycol) methacrylate (PPGM) in MEK at 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer and the molecular weight of the polymer estimated by NMR spectroscopy was in close agreement with the theoretical molecular weight, as expected for controlled processes. The statistical copolymerization of PPGM or methyl ether poly(ethylene glycol) methacrylate (MPEGMA) with a perfluoroalkyl ethyl methacrylate by copper-mediated ATRP was also investigated and led to copolymers with essentially random incorporation of monomers. The syntheses and characterization of star-like homopolymers of MPEGMA or the fluorinated monomer via ATRP are also reported, as well as an amphiphilic star-like block copolymer containing ethyleneglycol units as the core and fluorinated moieties in the shell. The micellar behavior of this copolymer was investigated as a function of the external environment.  相似文献   

5.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Fluorinated block copolymers composed of a polystyrene (Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains (AF) were prepared by atom transfer radical polymerization (ATRP). Fluorescence emission properties were imparted to the copolymers by incorporation in the second block of a julolidine-based fluorescent molecular rotor (JCBF). The synthesized block copolymers were used as the fluorescent low-surface energy thin top-layer onto a polystyrene bottom-layer to produce novel two-layer film vapochromic sensors. Contact angle and X-ray photoelectron spectroscopy (XPS) measurements revealed that the two-layer film surfaces were hydrophobic and lipophobic at the same time and highly enriched in fluorine content as a result of the effective segregation of the perfluorinated tails to the polymer-air interface. The fluorescence intensity of the two-layer films decreased significantly when they were exposed to vapours of organic solvents, including tetrahydrofurane, chloroform, and trifluorotoluene. However, an AF content-dependent sensing behaviour was also observed, with the two-layer films containing the copolymer with the shorter fluorinated block giving a more rapid and almost quantitative decrease in fluorescence variation. Fluorescence emission of the films was also proved to vary with temperature. Both the vapochromic and thermochromic responses were reversible after successive solicitation cycles. The fluorescence variation of the two-layer films was much more marked than that of the corresponding PS/JCBF blend, thus providing a system potentially applicable as highly sensitive volatile organic compound (VOC) sensor, thanks to the active role of the fluorinated block in promoting the migration of the fluorophore to the outermost surface layers.  相似文献   

7.
Novel, fluorinated copolymers with different architectures bearing sulfopropyl groups were synthesized in a three‐step procedure. The first step involved atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers followed by two modification reactions performed on the polymer chain: demethylation and sulfopropylation. As a result two types of fluorinated copolymers were obtained. The first one was synthesized by ATRP of 2,3,5,6‐tetrafluoro‐4‐methoxystyrene (TFMS). After the modification steps copolymers with randomly distributed sulfopropyl groups along the backbone were obtained. The second type of copolymers has diblock architecture with one of the blocks being sulfopropylated. They were synthesized via ATRP of 2,3,4,5,6‐pentafluorostyrene (FS) initiated by a PTFMS‐macroinitiator followed by demethylation and sulfopropylation of the TFMS‐block. The copolymers were characterized by size‐exclusion chromatography, FTIR, and 1H NMR spectroscopy. Their thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7827–7834, 2008  相似文献   

8.
通过原子转移聚合合成了大分子引发剂PBMA Br及系列含氟两嵌段共聚物P(BMA b FAEM) ,并利用1 H NMR、F EA、GPC、FTIR对其结构进行了表征 .所合成的含氟嵌段共聚物膜具有低临界表面张力 .本文通过接触角的测定研究了含氟两嵌段共聚物的憎水、憎油性能与共聚物的含氟量 ,热处理温度 ,热处理时间的关系 ,结果表明含氟嵌段PFAEM具有向空气 聚合物界面富集的倾向 ,在共聚物中引入含氟嵌段可以明显提高共聚物的憎水、憎油性 .当含氟嵌段达 7 6wt%时 ,临界表面张力 (γc =18 7mN m)已与聚四氟乙烯相当 (γc=18 5mN m) ,显示出明显的低表面能特征  相似文献   

9.
A series of fluorinated block copolymers with different fluorinated block lengths and compositions were synthesized by atom transfer radical polymerization (ATRP), and then the block copolymers containing sulfonic groups with various sulfonation levels were successfully prepared further via a sulfonation reaction. These well‐defined block copolymers were characterized by means of Fourier transform infrared (FTIR), 1H‐nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The surface activities of the fluorinated block copolymers containing sulfonic groups in N‐methyl pyrrolidone solution and the surface properties of the films prepared from such a solution were examined, and the experimental results showed that the fluorinated block copolymers exhibited a high surface activity in solution and quite a low solid surface energy of films, even though they contain hydrophilic sulfonic groups. The critical surface tensions of these copolymers were estimated and were comparable to that of polytetrafluoroethylene. Even more interestingly, the surface activities of the block copolymers containing sulfonic groups or sodium sulfonate groups in aqueous solution were also measured. It was found that the surface activity in aqueous solution was weaker than that in N‐methyl pyrrolidone solution and depended on both the length of the fluorinated block and the sulfonation level of the block copolymers. The surface properties of the films prepared from the block copolymers in aqueous solution were tested, and most of these films exhibited a hydrophilic surface property. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4809–4819, 2004  相似文献   

10.
利用ATRP技术合成聚甲基丙烯酸甲酯-b-聚甲基丙烯酸丁酯(或聚甲基丙烯酸十八烷基酯)-b-聚(甲基丙烯酸2-全氟辛基乙酯)(PMMA230-b-PBMA12(或PODMA12)-b-PFMAn)嵌段共聚物.通过X射线光电子能谱(XPS)、X射线衍射(XRD)、动态光散射(DLS)等技术研究了中间段选择性成膜溶剂对氟化...  相似文献   

11.
A new initiating/catalytic system for atom transfer radical polymerization (ATRP) is reported. This system starts with alkyl halides as initiators and transition metal complexes in their oxidatively stable state (e.g., Cu(II)Br2/ligand) as catalysts. The activators are generated by electron transfer (AGET) without involvement of initiating organic radicals. AGET ATRP has a significant advantage over simultaneous reverse and normal initiation (SR&NI) ATRP, because it provides a simple route for synthesizing pure polymers with complex architectures such as star copolymers, block copolymers, etc. Furthermore, AGET ATRP can be also successfully carried out in miniemulsion. Homopolymers and pure block copolymers were successfully synthesized via ATRP in miniemulsion using AGET ATRP. The final products were analyzed via two-dimensional chromatography, which combines high performance liquid chromatography (HPLC) and gel permeation chromatography (GPC). The resulting chromatograms showed that pure linear block copolymers and star block copolymers were prepared without the presence of any homopolymers.  相似文献   

12.
Hydroxy‐telechelic poly(methyl methacrylate)s of molecular weights below 5000 were obtained by atom transfer radical polymerization (ATRP) of methyl methacrylate followed by end‐capping with allyl alcohol via atom transfer radical addition (ATRA). As initiators for the ATRP, monofunctional initiators with an additional hydroxy group in the molecule or bifunctional initiators were employed. The successful synthesis of the hydroxy‐telechelic PMMA was proved by determination of their molecular weight using MALDI‐TOF‐MS. The efficiency of the end‐capping reaction was determined by 1H NMR spectroscopy using the allyl N‐(4‐tolyl)carbamate as end‐capping agent. Block copolymers comprising a poly(ethylene oxide) (PEO) block and a poly(methyl methacrylate) (PMMA) block were prepared by ATRP using a macroinitiator on the PEO basis. The dormant species of the macroinitiator consists of the phenyl chloroacetate moiety which shows a high rate of initiation. The successful synthesis of the poly(ethylene oxide)‐block‐poly(methyl methacrylate) was proved by 1H NMR spectroscopy; the ratios of EO/MMA repeating units in the feed and the copolymer were nearly equal.  相似文献   

13.
采用XPS与接触角法研究氟聚合物表面结构与性能   总被引:6,自引:0,他引:6  
本文采用接触角和变角XPS方法对FA共聚物的表面能、 表面微相结构做了进一步的研究.  相似文献   

14.
Amphiphilic core–shell nanostructures containing 19F stable isotopic labels located regioselectively within the core domain were prepared by a combination of atom transfer radical polymerization (ATRP), supramolecular assembly, and condensation‐based crosslinking. Homopolymers and diblock copolymers containing 4‐fluorostyrene and methyl acrylate were prepared by ATRP, hydrolyzed, assembled into micelles, and converted into shell‐crosslinked nanoparticles (SCKs) by covalent stabilization of the acrylic acid residues in the shell. The ATRP‐based polymerizations, producing the homopolymers and diblock copolymers, were initiated by (1‐bromoethyl)benzene in the presence of CuBr metal and employed N,N,N,N,N″‐pentamethyldiethylenetriamine as the coordinating ligand for controlled polymerizations at 75–90 °C for 1–3 h. Number‐average molecular weights ranged from 2000 to 60,000 Da, and molecular weight distributions, generally less than 1.1 and 1.2, were achieved for the homopolymers and diblock copolymers, respectively. Methyl acrylate conversions as high as 70% were possible, without observable chain–chain coupling reactions or molecular weight distribution broadening, when bromoalkyl‐terminated poly(4‐fluorostyrene) was used as the macroinitiator. Poly(4‐fluorostyrene), incorporated as the second segment in the diblock copolymer synthesis, was initiated from a bromoalkyl‐terminated poly(methyl acrylate) macroinitiator. After hydrolysis of the poly(methyl acrylate) block segments, micelles were formed from the resulting amphiphilic block copolymers in aqueous solutions and were then stabilized by covalent intramicellar crosslinking throughout the poly(acrylic acid) shells to yield SCKs. The SCK nanostructures on solid substrates were visualized by atomic force microscopy and transmission electron microscopy. Dynamic light scattering was used to probe the effects of crosslinking on the resulting hydrodynamic diameters of nanoparticles in aqueous and buffered solutions. The presence of fluorine atoms in the diblock copolymers and resulting SCK nanostructures allowed for characterization by 19F NMR in addition to 1H NMR, 13C NMR, and IR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4152–4166, 2001  相似文献   

15.
A series of poly(sodium styrene sulfonate)-b-poly(methyl methacrylate), PSSNa-b-PMMA, amphiphilic diblock copolymers have been synthesized through atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide/water mixtures, starting from a PSSNa macroinitiator. The kinetics of the polymerization was followed by 1H NMR, while the chemical composition of the copolymers was verified by a variety of techniques, such as 1H NMR, FTIR and TGA. The MMA content of the copolymers ranges from 0 up to 60 mol%, while the number–average molecular weight of the PSSNa macroinitiator was 9000 g/mol. The self-association of the diblock copolymers in aqueous solution was compared to the respective behavior of similar random P(SSNa-co-MMA) copolymers through optical density measurements, pyrene fluorescence probing, dynamic light scattering and surface tension measurements. It is shown that the diblock copolymers form micellar structures in water, characterized by an increasing hydrophobic character and a decreasing size as the length of the PMMA block increases. These micelle-like structures turn from surface inactive to surface active as the length of the PMMA block increases. Moreover, contrary to the MMA-rich random copolymers, the respective diblock copolymers form water insoluble polymer/surfactant complexes with cationic surfactants such as hexadecyltrimethyl ammonium bromide (HTAB), leading to materials with antimicrobial activity.  相似文献   

16.
Low molar mass (∼ 4000) di- and triblock copolymers of styrene and tert-butyl acrylate were synthesized by atom transfer radical polymerization (ATRP) in bulk and solution conditions. A CuBr/N, N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalyst system in conjunction with an alkyl-halide initiator were used to control the synthesis of the polystyrene macroinitiator and the subsequent copolymerization with tert-butyl acrylate. Hydrolysis of the tert-butyl acrylate blocks to acrylic acid blocks in the presence of trifluoroacetic acid resulted in the formation of an amphiphilic block copolymer. Size exclusion chromatography (SEC) and matrix assisted laser desorption ionization - time of flight - mass spectrometry (MALDI-TOF-MS) were used to determine the molar mass and molar mass distribution of the polystyrene macroinitiators and the block copolymers. 1H NMR was used to characterize the polystyrene macroinitiators and the block copolymers, and to confirm hydrolysis of the poly(tert-butyl acrylate) blocks to poly(acrylic acid).  相似文献   

17.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   

18.
A simple, one‐step procedure has been developed for the preparation of bifunctional initiators capable of polymerizing monomers suitable for atom‐transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). These bifunctional initiators were employed for making narrow disperse poly(styrene) macroinitiators, which were subsequently used for the ROP of various lactides to yield poly(styrene‐block‐lactide) copolymers. Thermogravimetric analysis (TGA) of these block copolymers are interesting in that it shows a two‐step degradation curve with the first step corresponding to the degradation of poly(lactide) segment and the second step associated with the poly(styrene) segment of the block copolymer. This nature of the block copolymer makes it possible to estimate the block copolymer content by TGA in addition to the 1H NMR spectroscopic analysis. Thus, this study for the first time highlights the possibility of making porous materials by thermal means which are otherwise obtained by base hydrolysis. The bifunctional initiators were prepared by the esterification of 3‐hydroxy, 4‐hydroxy, and 3,5‐dihydroxy benzyl alcohols with α‐bromoisobutyryl bromide and 2‐bromobutyryl bromide. A mixture of products was obtained, which were purified by column chromatography. The esterified benzyl alcohols were employed in the polymerization of styrene under copper (Cu)‐catalyzed ATRP conditions to yield macroinitiators with low polydispersity. These macroinitiators were subsequently used in the ROP of L ‐, DL ‐, and mixture of lactides. The formation of block copolymers was confirmed by gel permeation chromatography (GPC), spectroscopic and thermal characterizations. The molecular weight of the block copolymers was always higher than the macroinitiator, and the GPC chromatogram was symmetrical indicating the uniform initiation of ROP by the macroinitiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 102–116, 2008  相似文献   

19.
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010  相似文献   

20.
Well‐defined amphiphilic pentablock copolymers Siy‐(EGx‐FAz)2 composed of polysiloxane (Si), polyethylene glycol (EG), and perfluorohexylethyl polyacrylate (FA) blocks are synthesized by ATRP of FA monomer starting from a difunctional bromo‐terminated macroinitiator. Diblock copolymers EGx‐FAz are also synthesized as model systems. The block copolymers are used, either alone or blended with a PDMS matrix in varied loadings, to prepare antibiofouling coatings. Angle‐resolved XPS and contact angle measurements show that the coating surface is highly enriched in fluorine content but undergoes reconstruction after contact with water. Protein adsorption experiments with human serum albumin and calf serum highlight that diblock copolymers resist protein adhesion better than do pentablock copolymers. Blending of the pentablock copolymer with PDMS results in increased protein adsorption. By contrast, the PDMS‐matrix coatings show high removal percentages of sporelings of the green fouling alga Ulva linza. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1213–1225  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号